PROPVARIANT  LKP82R

The PROPVARIANT structure is used in most of the methods of IPropertyStorage to define the type tag and the value of a property in a property set. There are five members. The first, the value type tag, and the last, the value of the property, are significant. The middle three are reserved for future use. The PROPVARIANT structure is defined as follows:

 

Note  The bool member in previous definitions of this structure has been renamed to boolVal, since some compilers now recognize bool as a keyword.

 

struct PROPVARIANT{ 

    VARTYPE        vt;          // value type tag

    WORD           wReserved1;

    WORD           wReserved2;

    WORD           wReserved3;

    union { 

    // none                     // VT_EMPTY, VT_NULL, VT_ILLEGAL

    unsigned char  bVal;        // VT_UI1

    short          iVal;        // VT_I2

    USHORT         uiVal;       // VT_UI2

    long           lVal;        // VT_I4

    ULONG          ulVal;       // VT_UI4

    LARGE_INTEGER  hVal;        // VT_I8

    ULARGE_INTEGER uhVal;       // VT_UI8

    float          fltVal;      // VT_R4

    double         dblVal;      // VT_R8

    CY             cyVal;       // VT_CY

    DATE           date;        // VT_DATE

    BSTR           bstrVal;     // VT_BSTR 

    VARIANT_BOOL   boolVal;        // VT_BOOL

    SCODE          scode;       // VT_ERROR

    FILETIME       filetime;    // VT_FILETIME

    LPSTR          pszVal;      // VT_LPSTR     // string in the current system Ansi code page

    LPWSTR         pwszVal;     // VT_LPWSTR    // string in Unicode

    CLSID*         puuid;       // VT_CLSID

    CLIPDATA*      pclipdata;   // VT_CF

 

    BLOB           blob;        // VT_BLOB, VT_BLOBOBJECT

    IStream*       pStream;     // VT_STREAM, VT_STREAMED_OBJECT

    IStorage*      pStorage;    // VT_STORAGE, VT_STORED_OBJECT

 

    CAUB           caub;         // VT_VECTOR | VT_UI1

    CAI            cai;          // VT_VECTOR | VT_I2

    CAUI           caui;         // VT_VECTOR | VT_UI2

    CAL            cal;          // VT_VECTOR | VT_I4

    CAUL           caul;         // VT_VECTOR | VT_UI4

    CAH            cah;          // VT_VECTOR | VT_I8

    CAUH           cauh;         // VT_VECTOR | VT_UI8

    CAFLT          caflt;        // VT_VECTOR | VT_R4

    CADBL          cadbl;        // VT_VECTOR | VT_R8

    CACY           cacy;         // VT_VECTOR | VT_CY

    CADATE         cadate;       // VT_VECTOR | VT_DATE

    CABSTR         cabstr;       // VT_VECTOR | VT_BSTR

    CABOOL         cabool;       // VT_VECTOR | VT_BOOL

    CASCODE        cascode;      // VT_VECTOR | VT_ERROR

    CALPSTR        calpstr;      // VT_VECTOR | VT_LPSTR

    CALPWSTR       calpwstr;     // VT_VECTOR | VT_LPWSTR

    CAFILETIME     cafiletime;   // VT_VECTOR | VT_FILETIME

    CACLSID        cauuid;       // VT_VECTOR | VT_CLSID

    CACLIPDATA     caclipdata;   // VT_VECTOR | VT_CF

    CAPROPVARIANT  capropvar;    // VT_VECTOR | VT_VARIANT

    }} PROPVARIANT

 

Remarks

PROPVARIANT is the fundamental data type by which property values are read and written through the IPropertyStorageKFYHMA interface.

The data type PROPVARIANT is related to the data type VARIANT, defined as part of Automation in OLE2 and defined in the Win32 SDK header file oleauto.h. Several definitions are reused from Automation, as follows:

typedef struct  tagCY { 

    unsigned long      Lo;

    long               Hi;

    } CY

 

typedef CY             CURRENCY;

typedef short          VARIANT_BOOL;

typedef unsigned short VARTYPE;

typedef double         DATE;

typedef OLECHAR*       BSTR;

 

typedef struct         tagCLIPDATA { 

    ULONG              cbSize;  //Includes sizeof(ulClipFmt)

    long               ulClipFmt;

    BYTE*              pClipData;

    } CLIPDATA

 

In addition, several new data types that define counted arrays of other data types are required. The data types of all counted arrays begin with the letters CA (such as CAUB) and have an ORed vt value. The counted array structure has the following form (where name is the specific name of the counted array):

#define TYPEDEF_CA(type, name)

 

    typedef struct tag ## name { \

        ULONG cElems;\

        type *pElems;\

        } name

 

Propvariant Type

Code

Propvariant Member

Value Representation

VT_EMPTY

0

None

A property with a type indicator of VT_EMPTY has no data associated with it; that is, the size of the value is zero.

VT_NULL

1

None

This is like a pointer to NULL.

VT_UI1

17

bVal

1-byte unsigned integer

VT_I2

2

iVal

Two bytes representing a 2-byte signed integer value.

VT_UI2

18

uiVal

2-byte unsigned integer

VT_I4

3

lVal

4-byte signed integer value

VT_UI4

19

ulVal

4-byte unsigned integer

VT_I8

20

hVal

8-byte signed integer

VT_UI8

21

uhVal

8-byte unsigned integer

VT_R4

4

fltVal

32-bit IEEE floating point value

VT_R8

5

dblVal

64-bit IEEE floating point value

VT_CY

6

cyVal

8-byte two's complement integer (scaled by 10,000). This type is commonly used for currency amounts.

VT_DATE

7

date

A 64-bit floating point number representing the number of days (not seconds) since December 31, 1899. For example, January 1, 1900 is 2.0, January 2, 1900 is 3.0, and so on). This is stored in the same representation as VT_R8.

VT_BSTR

8

bstrVal

Pointer to a null terminated Unicode string. The string is immediately preceded by a DWORD representing the byte count, but bstrVal points past this DWORD to the first character of the string. BSTRs must be allocated and freed using the OLE Automation SysAllocString and SysFreeString calls.

VT_BOOL

11

boolVal (bool in earlier designs)

Boolean value, a WORD containing 0 (false) or -1 (true).

VT_ERROR

10

scode

A DWORD containing a status code.

VT_FILETIME

64

filetime

64-bit FILETIME structure as defined by Win32. It is recommended that all times be stored in Universal Coordinate Time (UTC).

VT_LPSTR

30

pszVal

Pointer to a null terminated ANSI string in the system default code page.

VT_LPWSTR

31

pwszVal

Pointer to a null terminated Unicode string in the user s default locale.

VT_CLSID

72

puuid

Pointer to a CLSID (or other GUID).

VT_CF

71

pclipdata

Pointer to a CLIPDATA structure, described above.

VT_BLOB

65

blob

DWORD count of bytes, followed by that many bytes of data. The byte count does not include the four bytes for the length of the count itself; an empty BLOB would have a count of zero, followed by zero bytes. This is similar to VT_BSTR but does not guarantee a null byte at the end of the data.

VT_BLOBOBJECT

70

blob

A BLOB containing a serialized object in the same representation as would appear in a VT_STREAMED_OBJECT. That is, a DWORD byte count (where the byte count does not include the size of itself) which is in the format of a class identifier followed by initialization data for that class.

The only significant difference between VT_BLOB_OBJECT and VT_STREAMED_OBJECT is that the former does not have the system-level storage overhead that the latter would have, and is therefore more suitable for scenarios involving numbers of small objects.

VT_STREAM

66

pStream

Pointer to an IStream interface, representing a stream which is a sibling to the  Contents  stream.

VT_STREAMED_
OBJECT

68

pStream

As in VT_STREAM, but indicates that the stream contains a serialized object, which is a CLSID followed by initialization data for the class. The stream is a sibling to the Contents stream that contains the property set.

VT_STORAGE

67

pStorage

Pointer to an IStorage interface, representing a storage object that is a sibling to the  Contents  stream.

VT_STORED_
OBJECT

69

pStorage

As in VT_STORAGE, but indicates that the designated IStorage contains a loadable object.

VT_VECTOR

0x1000

ca*

If the type indicator is one of the simple propvariant types ORed with this one, the value is one of the counted array values. This is a DWORD count of elements, followed by that many repetitions of the value.

For example, a type indicator of VT_LPSTR|VT_VECTOR has a DWORD element count, a DWORD byte count, the first string data, padding bytes for 32-bit alignment (see below), a DWORD byte count, the second string data, and so on.

Nonsimple types cannot be ORed with VT_VECTOR. These types are VT_STREAM, VT_STREAM_OBJECT, VT_STORAGE, VT_STORAGE_OBJECT. VT_BLOB and VT_BLOB_OBJECT types also cannot be ORed with VT_VECTOR.

VT_VARIANT

12

capropvar

A DWORD type indicator followed by the corresponding value. VT_VARIANT can be used only with VT_VECTOR.

VT_TYPEMASK

0xFFF

 

Used as a mask for VT_VECTOR and other modifiers to extract the raw VT value.

 

Clipboard format identifiers, stored with the tag VT_CF, use one of five different representations (identified in the ulClipFmt member of the CLIPDATA structure):

ulClipFmt Value

pClipData value

-1L

a DWORD containing a built-in Windows clipboard format value.

-2L

a DWORD containing a Macintosh clipboard format value.

-3L

a GUID containing a format identifier (rarely used).

any positive value

a null-terminated string containing a Windows clipboard format name, one suitable for passing to RegisterClipboardFormat. The code page used for characters in the string is per the code page indicator. The  positive value  here is the length of the string, including the null byte at the end.

0L

no data (rarely used)

 

Within a vector of values, each repetition of a value is to be aligned to 32-bit boundaries. The exception to this rule is scalar types which are less than 32 bits:  VT_UI1, VT_12, VT_U12, and VT_BOOL. Vectors of these values are packed.

Therefore, a value with type tag VT_I2 | VT_VECTOR would be a DWORD element count, followed by a sequence of packed 2-byte integers with no padding between them.

However, a value with type tag VT_LPSTR | VT_VECTOR would be a DWORD element count, followed by a sequence of (DWORD cch, char rgch[]) strings, each of which may be followed by null padding to round to a 32-bit boundary.