

Disclaimer and Limitation of Liability:
The content of this file is copyrighted material of McGraw-Hill. McGraw-
Hill makes no representations or warranties as to the accuracy of any
information contained in the McGraw-Hill Material, including any
warranties of merchantability or fitness for a particular purpose. In no
event shall McGraw-Hill have any liability to any party for special,
incidental, tort, or consequential damages arising out of or in connection
with the McGraw-Hill Material, even if McGraw-Hill has been advised of
the possibility of such damages.

XML
Security

Blake Dournaee

Copyright © 2002 by The McGraw-Hill Companies

XML Primer

CHAPTER 3

The world of Extensible Markup Language (XML) is an endless ocean of
standards and technologies that mimics a living being, constantly chang-
ing and ever evolving. Trying to capture the breadth and depth of XML in
a single chapter is a hopeless task with no end. The goal here, then, is to
focus on a few anchors in the XML ocean that represent fundamental con-
cepts. There is little point in repeating details that can be found in the text
of a published standard. Instead, the reader will find an explanation of
fundamental XML concepts bolstered with real-world examples. Special
focus is on building block technologies that provide the groundwork for
the sea of XML.

This chapter is divided into two broad topics, an introduction to basic
XML syntax and a preliminary discussion of XML processing. The divi-
sion between syntax and processing is a theme that will be revisited
throughout this book. The core XML syntax topics discussed include the
basics of well-formed documents, markup concepts, some information
about namespaces, and numerous examples. XML processing is discussed
with the presentation of two topics: the Document Object Model (DOM)
and the XPath data model. The seasoned reader with previous experience
with XML might find this chapter a bit repetitive, but XML syntax and
processing is a necessary building block for XML Security.

03_CH03/DournaeeX 1/24/02 10:31 AM Page 57

What Is XML?
This question reminds me of an assignment once given in high school
where the task was to answer the broad question: “What is History?” As
youngsters we were quick to respond with simple answers such as “His-
tory is what happened in the past,” or for those of us who were really lazy,
we would provide the proctor with Webster’s definition (and no doubt
receive a poor grade).

The question “What is XML?” is a loaded question that has no simple
answer. It almost seems like any simple answer given would be akin to
answering the “What is History” question with the same naiveté of some-
one in high school. For XML, the answer to this question often depends on
the audience. There are books on XML for managers, software developers,
sales representatives, and marketing people. Here we will take the view-
point of a software engineer or computer scientist as we attempt to create
yet another definition of this technology.

Meta-Language and Paradigm Shift

The topic of XML Security requires viewing XML from a slightly different
angle compared to other technologies that leverage XML to accomplish its
goals. XML Security is devoid (thankfully) of presentation semantics. That
is, the current XML Security specifications don’t focus on rendering or dis-
playing an XML Signature or encrypted XML element. In this respect,
XML Security technologies are more closely related to existing security
technologies such as the Public Key Cryptography Standards (PKCS), dis-
cussed in Chapter 2. Don’t look for any HTML or JavaScript code in this
book, because it is simply not the focus of the XML Security specifications.

Two vocabulary words that are especially useful in defining XML from
an XML Security standpoint are meta-language and paradigm shift. The
noun meta-language best describes the what part of XML Security and
the verb paradigm-shift helps describe the where part of XML Security.
Thankfully, the how part is left to the dedicated authors of the XML Secu-
rity Recommendations and Drafts.

Meta-Language

XML is not a language. Despite the name Extensible Markup Language,
it is easiest to understand XML as a meta-language. What exactly does

XML Security58

03_CH03/DournaeeX 1/24/02 10:31 AM Page 58

this mean? A meta-language is a language used to describe other lan-
guages. Some would call this a true language. The prefix “meta” used in
this sense has its roots in analytic philosophy and loosely means one level
up or above and beyond.

So what does this mean for you? In simple terms, XML is a syntax used
to describe other markup languages. The XML 1.0 Recommendation as
released by the W3C defines no tag set or language keywords. The skepti-
cal reader can check for himself or herself, but simply put, only a syntax
and grammar is defined by the XML 1.0 Recommendation. The term syn-
tax here refers to a set of constraints about how and where tags can be
placed, and the acceptable range of characters that are legal, as well as
the rules for markup in general. Moreover, the basic rules and syntax of
XML 1.0 are deceptively simple and can be learned in the better part of an
hour.

At this point, no examples have been provided, so the assumption is
that the reader is as lost as ever. The next question is: “If XML is a syntax
used to describe other markup languages, what are these other markup
languages?” The answer to this question is the sea of XML-related stan-
dards and, more importantly, the XML Security Standards. For example,
the XML Signature Recommendation defines a markup language used to
represent a digital signature; the XML Encryption Draft defines a
markup language used to represent encrypted elements. Similarly,
markup languages such as MathML or DocBook are also other markup
languages that are defined in accordance with the syntax put forth by the
XML 1.0 Recommendation. MathML is a markup language for represent-
ing mathematics and DocBook is a markup language used for represent-
ing articles or books.

The final part of our XML definition relates to how exactly these other
markup languages are defined: XML is a syntax used to describe other
markup languages using markup. This seems like a circular definition—
of course markup languages use markup. A short example of arbitrary
markup is given in Listing 3-1.

The preceding listing is arbitrary data with tags around it. For exam-
ple, we have a piece of data, Samuel Adams, that is marked up with the
tag <Good_Beer>. The important point here isn’t what the tags say or
even what they mean; instead, the focus should be on what the tags can
do. Tags provide markup and markup can accomplish many different
things with regards to data. In fact, the list of things that markup can
accomplish is so important that it belongs in a box.

59Chapter 3 XML Primer

03_CH03/DournaeeX 1/24/02 10:31 AM Page 59

With the careful use of tags around arbitrary textual data, we can
accomplish almost any sort of semantics desired. We can invent tags and
structures, give various roles to data, and define relationships between
tags. The power of markup is nearly limitless for carving up any sort of
data. This property of markup is especially powerful because the basic
concept behind markup is simple. It doesn’t take years of practice to begin
using markup, nor is the syntax complicated and difficult to understand.
It is this combined simplicity and power that makes XML an exciting
technology.

Because XML is a meta-language, every use of XML and markup to add
semantics to data results in the creation of a markup language. For exam-
ple, if someone were to look at Listing 3-1 and ask the question: “What
language is that?” the correct answer is: “It’s a fictional markup language
that uses the syntax of XML.” In short, Listing 3-1 actually defines its own
markup language. It uses the tags <Food>, <FrenchFries>, <Beers>,
<Good_Beer>, and <Bad_Beer>. While the tag set is small and rather
useless, it is a valid markup language. Before we move into the specifics
of XML syntax, we will examine the other high-level defining component
of XML as it relates to XML Security: paradigm-shift.

XML Security60

Listing 3-1

Example of
arbitrary markup

<Food>
<FrenchFries> Curly Fries </FrenchFries>
<Beers>
<Good_Beer> Samuel Adams </Good_Beer>
<Good_Beer> Guinness </Good_Beer>
<Bad_Beer> Budweiser </Bad_Beer>
<Bad_Beer> Fosters </Bad_Beer>

</Beers>
</Food>

The Roles of Markup

� Markup can add semantics to data.

� Markup can demarcate data.

� Markup can define roles for data.

� Markup can define containment.

� Markup can define relationships.

03_CH03/DournaeeX 1/24/02 10:31 AM Page 60

Paradigm-Shift

XML Security represents a clear paradigm-shift from ASN.1-based,
binary standards toward more portable, text-based XML solutions. Most
of the entities in the security world that relate to cryptography and public-
key infrastructure (PKI) use ASN.1 types to encode various entities. When
use the term cryptography, we are really referring to applied cryptography
that takes a standards-based approach—real cryptographers probably do
much of their work with pencil and paper.

Examples of these binary format security standards include X.509 cer-
tificates or most of the PKCS standards—all of these use ASN.1 types to
encode their pieces and parts. Examples of these formats have already
been given in Chapter 2, but the paradigm shift that XML Security
promises is a shift from BER encoded ASN.1 “objects” to the analogous
XML structures. A clear example of this shift is seen with the way a veri-
fication key (usually a public key) is represented in an XML Signature.
As discussed in Chapter 4 and Chapter 8, the <KeyValue> tag (just more
markup) is used to represent a raw public key that can be used for decryp-
tion. This is shown in Listing 3-2. This is contrasted with the X.509
SubjectPublicKeyInfo introduced in Chapter 2 and discussed again in
Chapter 8, shown again in Listing 3-3.

61Chapter 3 XML Primer

Listing 3-2

The <KeyValue>
element from an
XML signature

<KeyValue>
<RSAKeyValue>
<Modulus>
s3mkTQbzxuNFPFDtWd/9jvs8tF5ynBLilbG/sT24OglEol
1PBvRe+VUJU0eI2SRhN/KtZv4iD2jwT0Sko0eeJw==

</Modulus>
<Exponent>EQ==</Exponent>

</RSAKeyValue>
</KeyValue>

Listing 3-3

A binary
SubjectPublic-
KeyInfo
interpreted with
an ASN.1 parser

SEQUENCE {
SEQUENCE {
OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1 1)
NULL
}

BIT STRING 0 unused bits
30 46 02 41 00 B3 79 A4 4D 06 F3 C6 E3 45 3C 50
ED 59 DF FD 8E FB 3C B4 5E 72 9C 12 E2 95 B1 BF
B1 3D B8 38 69 44 A2 5D 4F 06 F4 5E F9 55 09 53
47 88 D9 24 61 37 F2 AD 66 FE 22 0F 68 F0 4F 44
A4 A3 47 9E 27 02 01 11

}

03_CH03/DournaeeX 1/24/02 10:31 AM Page 61

Both Listings 3-2 and 3-3 are showing us the same datatype, an RSA
public key. Both structures clearly demarcate the type of key as well as
the modulus and the exponent. Listing 3-3 does this a bit more covertly,
as the modulus and exponent are encoded inside the BIT STRING. List-
ing 3-2 uses XML syntax and markup while Listing 3-3 uses ASN.1 and
BER. Both encoding schemes are intended to be extensible and both
encoding schemes have tradeoffs. The XML version is certainly user-
friendly and one might argue that it is easier for an application to parse
text data with XML markup. The binary version, however, is far more
compact (once encoded in binary, half as small or smaller than the equiv-
alent XML version), but, as some would argue, harder for an application
to parse. Some would even be appalled at the space wasted by the XML
version. The difference between Listings 3-2 and 3-3 is the paradigm shift.
For better or for worse, emerging XML Security standards have a strong
“ASN.1 hate factor” and instead opt for cryptographic objects to take form
as semantically clean, easy to read, and easy to parse XML variations.

Now that the reader has some basic high-level notions about what
XML is (perhaps fuzzy notions), we can begin our descent from abstract
high-level ideas to more concrete, tedious details.

Elements, Attributes, and Documents

Three important terms for describing basic XML syntax are elements,
attributes, and documents. All three of these terms are special and impor-
tant; they encompass a large portion of the conceptual playing field for
XML and provide the foundation for the remainder of this chapter as well
as the entire book.

Elements and Attributes

We have spent some previous discussion throwing around the term
markup. A small example was given, and the reader should have seen
some tags with stuff inside, but little else should be evident besides the
fact that markup is useful for the intellectual carving of data.

Markup is often divided into two separate vocabulary words when we
are talking about XML: elements and attributes. An element is a start tag
and an end tag including the stuff inside of it and an attribute is a simple
name-value pair where the value is in single or double quotes. An

XML Security62

03_CH03/DournaeeX 1/24/02 10:31 AM Page 62

attribute cannot stand by itself and must be inside the start tag of a given
element. Two short examples follow:

<Food> Ice Cream </Food>
<Food Flavor="Chocolate"> Ice Cream </Food>

The first line in the previous example is an element called Food that
has Ice Cream as its element content. The second line in the previous
example is the same element with a name-value pair added to it (this is
an attribute). The name is Flavor and the value is Chocolate. Elements
may also be empty, having no element content. This is shown in the exam-
ple that follows:

<HealthyFood></HealthyFood>
<HealthyFood/>

The first line in the previous example is an element called <Healthy-
Food> that has nothing inside of it. The second line is shorthand for the
same empty element. Take note of this shorthand notation, because it is
used pervasively in many XML documents. This notation can be confusing
at first, but in all cases, it simply means an empty element.

Attributes may be used arbitrarily within start tags to add more mean-
ing to the data. In fact, there was a great deal of contention over the inclu-
sion of attributes within the XML syntax. The reason is because any data
that can be modeled with elements alone can also be modeled with an
attribute-centric approach and vice versa. Consider the following short
example. This example contains the same data as Listing 3-1, but it is
modeled almost entirely with attributes.

<Food FrenchFries = "CurlyFries"
Good_Beer1 = "Samuel Adams"
Good_Beer2 = "Guinness"
Bad_Beer1 = "Budweiser"
Bad_Beer2 = "Fosters"

</Food>

The markup used in the preceding example is certainly clumsier than
Listing 3-1, but the point here is that we are roughly modeling the same
data, but using attributes instead. There are five attributes inside the
Food element and they provide us with the same basic information as
shown in Listing 3-1. So which one is better? Both are legal XML docu-
ments; the answer to this question is really an answer to a much more
complicated data-modeling question. The convention, however, is to use

63Chapter 3 XML Primer

03_CH03/DournaeeX 1/24/02 10:31 AM Page 63

attributes more sparingly than elements. Elements and their contents
usually represent concrete information that will be displayed or rendered,
while attributes usually represent information required for processing.
This dichotomy, however, isn’t strict or formal and there isn’t anything
written down that says that this is how it must be. This is just convention.
XML Security-based standards use attributes heavily for algorithm infor-
mation and data sources while elements are used for concrete crypto-
graphic objects, such as keys or signature values. For example, consider
the short example that follows:

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

This <DigestMethod> empty element uses an attribute called
Algorithm with the rather long value http://www.w3.org/2000/09/
xmldsig#sha1. This element is commonly seen in an XML Signature,
and the meaning of the attribute value is intended to be the SHA-1 hash
function. Notice that even though the element is empty, it still communi-
cates information via the attribute. There is no requirement that all use-
ful elements must have content—this use of an empty element with an
attribute is frequently seen in the XML Security world. This shouldn’t
mean much to the reader at this point; these details will be hashed out in
Chapter 4 and Chapter 5.

XML Documents

Throughout this book and throughout many of the XML Security stan-
dards, reference is made to something called an XML document. This term
has a specific meaning and carries with it some implicit properties, the
most notable of which is the well-formed property. This property is the
most basic set of constraints that can be put on data represented using
XML; it defines simple syntax rules for the legal positioning of elements
and attributes. The reader is now asking, “So, what does well-formed
mean? What are these constraints?” In short, the list of constraints for a
well-formed document follows—again placed in a box because of their
importance.

There is a bit of hidden detail here, but not much. Let’s examine these
four constraints and go through some examples.

XML Security64

03_CH03/DournaeeX 1/24/02 10:31 AM Page 64

Root Element

The root element constraint is perhaps the easiest to see and understand.
Simply put, any data that wants to be well formed must have exactly one
root element. This means there must be one (and only one) parent ele-
ment. The root element has a synonym called document element. Some-
times we use the term root element and sometimes we use the term
document element. These refer to exactly the same thing; sometimes one
just sounds better! Listings 3-4 and 3-5 are examples of data that do not
have a single root element, while Listing 3-6 and Listing 3-7 correct these
examples to make them well formed. The additional root elements have
been added in bold.

65Chapter 3 XML Primer

Data represented in XML is well-formed if . . .

� There is exactly one root element.

� Every start tag has a matching end tag.

� No tag overlaps another tag.

� All elements and attributes must obey the naming constraints.

Listing 3-4

Sample XML
data without a
root element (not
well formed)

<Dark_Chocolate>
<Brand1>Hersheys</Brand1>
<Brand2>Ghiradelli</Brand2>

</Dark_Chocolate>
<Ice Cream>
<Brand1>Ben and Jerry</Brand1>
<Brand2>Dryers</Brand2>

</Ice Cream>

Listing 3-5

Sample XML
data without a
root element (not
well formed)

<Student> Joe </Student>
<Student> Bob </Student>
<Student> Mary </Student>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 65

Start Tags and End Tags

The next constraints, start tags and end tags, are also simple and easy to
see. For every start tag, there must be an associated end tag. Listing 3-8
shows the incorrect data and Listing 3-9 corrects this data by adding the
proper end tags.

Again, this constraint is quite simple. It is easy to see by inspection if
end tags or start tags are missing—the syntax so far is just not compli-
cated. Let’s move along to the last two constraints.

Overlapping Tags

Tags cannot overlap each other in such a way that one tag is closed before
another tag. This constraint is difficult to describe with clarity, but suffi-
ciently easy to see in an example. Consider the next small example:

<Student>
<SSN>123-45-6789</Student>

</SSN>

The previous example is in a lot of syntactic trouble—not only is there
no clear root element, but the <Student> tag is closed before the <SSN>
tag. To fix this, you have to be sure that the elements do not overlap. The

XML Security66

Listing 3-6

Sample XML
document (well-
formed data)

<FatteningFoods>
<Dark_Chocolate>
<Brand1>Hersheys</Brand1>
<Brand2>Ghiradelli</Brand2>

</Dark_Chocolate>
<Ice Cream>
<Brand1>Ben and Jerry</Brand1>
<Brand2>Dryers</Brand2>

</Ice Cream>
</FatteningFoods>

Listing 3-7

Sample XML
document (well-
formed data)

<Students>
<Student> Joe </Student>
<Student> Bob </Student>
<Student> Mary </Student>

</Students>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 66

following example shows how you can fix this to make it an XML docu-
ment that is well formed.

<Student>
<SSN>123-45-6789</SSN>

</Student>

Naming Constraints

Most of the tedious details of the well-formed property are contained
within the naming constraints for elements and attributes. These con-
straints are much more broad than the previous constraints because they
limit the range of acceptable characters for elements as well as some
details on white space. The least you need to know is contained in the box
that follows.

67Chapter 3 XML Primer

Listing 3-8

Sample XML
data missing
some end-tags
(not well formed)

<Candy>
<Good_Candy>
Milk Chocolate

<Bad_Candy>
Dark Chocolate

</Candy>

Listing 3-9

Sample XML
document (well-
formed data)

<Candy>
<Good_Candy>
Milk Chocolate

</Good_Candy>
<Bad_Candy>
Dark Chocolate

</Good_Candy>
</Candy>

Naming Constraints

� Element names must begin with a letter or underscore.

� Element names cannot contain embedded spaces.

� Element names are case sensitive.

� Attribute names must be unique per element (start tag).

� Attribute values must use single or double quotes.

� Attribute values cannot contain a � character.

03_CH03/DournaeeX 1/24/02 10:31 AM Page 67

Again, these naming constraints are still not that complicated. List-
ing 3-10 shows the gratuitous violation of every rule listed in the previous
box. The idea is to get the reader in tune with what the simplest legal
XML documents look like, and one way of reinforcing this is to look at the
illegal use of XML data.

The reader is challenged to scan Listing 3-10 and make an attempt to
find six naming constraint violations. The idea here is that well-formed
XML documents are not complex; the syntax is simple to learn and quite
intuitive.

If the reader has grasped the previous concepts with regard to XML
documents, the well-formed property and markup (elements and attrib-
utes), most of the battle is already won. At this point, the reader should
have the conceptual tools to build the simplest possible legal XML docu-
ments. We have made it this far with only three well-defined terms: docu-
ments, elements, and attributes. Once the reader can create and use XML
documents, it is possible to begin playing with and understanding the
pieces that comprise XML Security.

Aside from arbitrary binary data, any sort of XML data that is signed
or encrypted must be, at the very least, an XML document. Another point
that should be made here is that XML documents can be created using
only the simplest of tools; a text editor is all that is required. No browsers
or fancy tools are necessary. What we are looking at here is pure data,
carved up with markup and limited only by the well-formed constraint.

As a final exercise, consider Listing 3-11 that shows an XML Signature.
Using only the basic rules of XML syntax, the reader should have enough
information to determine if Listing 3-11 is a legal XML document, despite
the fact that the reader should have little or no knowledge of the meaning
of any of the elements or attributes used.

XML Security68

Listing 3-10

Sample XML
data that violates
almost every
naming
constraint (not
well formed)

<4Root_Element>
<Message> This is an invalid element </message>
<Another Message> This is also an invalid element </Another Message>
<Note color="blue" color="green"> These are colors </Note>
<Note color=red> I forgot this color </Note>
<Note lt="<"> Less than sign </Note>

</4Root_Element>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 68

The solution is, of course, the erroneous <DigestValue> element. There
are two opening tags for this element but no corresponding closing tag.

The URI

One potential confusing aspect of XML documents is the pervasive use of
URIs. A URI is a Uniform Resource Identifier and is a short string value
intended to identify something on the Web—whether it is a file, a service,
or a person. In fact, a URI can identify any resource that has identity. An
example of a URI is the string value http://www.rsasecurity.com.

Listing 3-11 includes five URIs within the markup. At this point, it’s
not clear what they are used for (other than the fact that they are
attribute values), and they tend to clutter the markup because of their
length.

Most readers have encountered URIs that identify Web resources such
as Web pages that use the HTTP scheme. This is the same string that is
pasted into a browser and used to visit your favorite Web site, and in this
case data is retrieved from the location (Web pages, graphics, and so
forth). The URIs used in Listing 3-11 differ in that not all of these URIs
are used as a data source. That is, in the context of Listing 3-11, some of

69Chapter 3 XML Primer

Listing 3-11

XML data that is
not well formed

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="http://www.rsasecurity.com">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>szlrBmSpQUJCO/ykyhS126/xMOM=<DigestValue>

</Reference>
</SignedInfo>

<SignatureValue>
UOmRz+EiYhy5LEsZ+fXBKnHlzWpJ+HFCOQlhWdb
I/DVlv7Szt11BEfn8fpC4bxG19UDd7MbpRedi
3qUeVP+GSvMElrPo8u++KsHMKGsaPoqeUOoUI
bW7biuW1rMSYpESdUeWbmy2p2/P8sulMouHrT
q+Jv92GQ+itjLimhmHLTs=

</SignatureValue>
</Signature>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 69

the URI values are not meant to be retrieved, but instead are meant to be
used as identifiers. This may seem odd because most URIs seen outside of
XML documents are meant to be de-referenced and used as a data source.

As we examine various XML technologies we will see the distinction
between those URIs used mainly as identifiers versus those URIs that are
simply meant to be sources of data. We will see that any sort of URI can
be used as a pure identifier, even if it happens to point to some real data.
The first example of URIs used as identifiers occurs in the following sec-
tion on Namespaces in XML.

Namespaces in XML

Another conceptual hurdle is the topic of namespaces in XML. The pur-
pose of a namespace when used in an XML document is to prevent the col-
lision of semantically different elements and attributes that happen to
have the same name. For example, suppose that an author of an XML doc-
ument wants to use an element called <Fans>. This particular element
can refer to the noun fan as in a ceiling fan, or it can refer to the noun fan
as related to an attendee at a sporting event. Still more problems occur if
this element, ostensibly created by two different authors, is merged into a
single XML document. Clearly, the meaning of the element is ambiguous
and it is unreasonable to expect any sort of application to be able to make
the distinction between the different elements without some other quali-
fying information.

This problem is solved with the use of a namespace. A namespace in the
context of XML is simply a collection of element and attribute names iden-
tified by a URI Reference. The intention of an XML namespace is to pro-
vide a globally unique name for an element or attribute. The previous
sentences should mean precious little to the reader without some exam-
ples. Before the examples, a point of clarification must be made. The term
URI Reference may be confusing —what is a URI Reference? A URI Ref-
erence is a URI that is used as a string identifier; it has no purpose beyond
this. Some may argue that this term is redundant and confusing, but it is
the nature of the URI in these examples; simply an identifier.

A pertinent example is the namespace used for an XML Signature. The
URI Reference is http://www.w3.org/2000/09/xmldsig# and the
collection of element and attribute names that are associated with this
string identifier include the elements and attributes that help define an
XML Signature. The specifics of the elements used in an XML Signature

XML Security70

03_CH03/DournaeeX 1/24/02 10:31 AM Page 70

are given in Chapter 4 and Chapter 5. The conceptual picture looks some-
thing like Figure 3-1.

The idea behind the namespace is quite simple, but the syntax to use a
namespace inside an XML document can get quite confusing because
there are multiple ways to accomplish the same thing. Let’s work through
some short examples. First consider Listing 3-12, which shows an XML
document using elements from the XML Signature namespace without
any sort of namespace qualification. Let’s not worry about the contents of

71Chapter 3 XML Primer

<Signature>

http://www.w3.org/2000/09/xmldsig#

<Transforms><SignatureMethod>

<CanonicalizationMethod>

<Reference>

<SignedInfo>
<DigestMethod>

<DigestValue>

<SignatureValue>

Figure 3-1

The XML
Signature
namespace and
its related
elements

Listing 3-12

An XML
document using
elements from the
XML Signature
namespace
without an
explicit
namespace
qualification

<Signature>
<SignedInfo>
...

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 71

the elements right now; this is not essential to understanding how the
namespace declarations work.

Listing 3-12 is ambiguous as far as the namespace is concerned. This
XML document uses elements called <Signature>, <SignedInfo>, and
<SignatureValue>, but doesn’t tell us where these element names came
from. It is possible at this point that these element names belong to
another XML document (not an XML signature). Listing 3-12 is akin to
using the <Fans> element indiscriminately, leaving the semantics
ambiguous. An XML namespace is declared with some use of the xmlns
attribute. This is shown in Listing 3-13.

The syntax shown in bold in Listing 3-13 declares a default namespace
for all of the elements in the XML document, including the root element.
This means that all of the elements in this document (unless otherwise
noted) all belong to the http://www.w3.org/2000/09/xmldsig#
namespace. This syntax for namespaces is perhaps the most straightfor-
ward and easiest to see; it shows how to associate a single namespace
within an XML document. We can throw a wrench in the example to see
how the syntax becomes more complicated. Consider Listing 3-14.

Listing 3-14 poses a problem because it uses two elements, <Fans> and
<CeilingFans>, that are not part of the XML Signature namespace. We
need some way of marking these elements as part of a different name-

XML Security72

Listing 3-13

An XML
document using
elements from the
XML Signature
namespace using
a default
namespace
declaration

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
...

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

Listing 3-14

An XML
document with an
improper element
for the default
namespace

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
...

</SignedInfo>
<SignatureValue> ... </SignatureValue>
<Fans>
<CeilingFans> 4 </CeilingFans>

</Fans>
</Signature>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 72

space, such that a processing application can make the proper distinction.
This is where the syntax gets a bit more complicated.

What we need to do is declare an additional namespace prefix. The
namespace prefix is an arbitrary string (usually short) associated with a
given namespace. This prefix is declared as another attribute value inside
the parent element for which the prefix is to be valid. This is shown in
Listing 3-15.

The namespace prefix chosen for Listing 3-15 is the short string foo. By
using the namespace prefix and the colon separator, we can associate a
particular element with a given namespace inside the element itself. This
is shown in Listing 3-15 when we declare the <Fans> element is a mem-
ber of http://fans.com by naming the element <foo:Fans>. This idea
is difficult to describe with much clarity, but it is easy to see with an exam-
ple. The string foo:Fans is called the qualified name and consists of the
namespace prefix (foo) and the local part (Fans).

XML documents that combine multiple technologies (such as a docu-
ment that uses elements from the XML Signature syntax and XML
Encryption syntax) will have to deal with declaring the appropriate name-
spaces and qualifying any elements used. For most of the discussion and
examples in this book, namespaces are not shown because they add to the
syntactic clutter and can cloud the understanding of some of the basic con-
cepts. That being said, they are an absolutely essential part of XML and
XML Security because without them there is no way to separate different
technologies and elements used within a given context. Further, there is
still much more to learn about namespaces! The previous discussion is
only a primer and gives the reader just enough ammunition to under-
stand the examples and usage within this book. The reader is urged to
visit the references section for places to go to read more about name-
spaces.

73Chapter 3 XML Primer

Listing 3-15

One way of using
two namespaces
in an XML
document

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#"
xmlns:foo="http://fans.com">

<SignedInfo>
...

</SignedInfo>
<SignatureValue> ... </SignatureValue>
<Object>
<foo:Fans>
<foo:CeilingFans> 4 </foo:CeilingFans>

</foo:Fans>
</Object>

</Signature>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 73

More Markup

Elements, attributes, and namespaces represent the most fundamental
types of XML markup. Additional markup constructs that should be
briefly mentioned are comments, processing instructions, and character
data sections. While not too terribly important for the scope of this book,
they are fundamental parts of an XML document and are used in the dis-
cussion of the Document Object Model (DOM), which is discussed in the
second half of this chapter.

Comments

The idea of a comment for a programming language is pervasive for any-
one who has compiled even the simplest program. The idea is exactly the
same for XML documents; there is a way for document authors to inform
others of what is going on inside their twisted minds. The syntax is sim-
ple and a brief example follows. The text between the <!-- and -->
delimeters is a comment:

<!-- Comment on This! -->

Processing Instructions

A processing instruction is intended to be a customized instruction to the
processing application. Processing instructions are currently not widely
used in the XML Security standards and can be safely ignored for the
most part. The syntax of a processing instruction is the two character
delimeter <? followed by a target and then an arbitrary data string and
finally the closing delimeter ?> The key idea about processing instruc-
tions is that they are predefined and application specific. For example, if
you need to enumerate a certain section of markup as significant for a
custom application, you might denote this with a processing instruction.
An example of a processing instruction follows:

<? application_processor_1 do_task ?>

The reason processing instructions are even mentioned here is because
they show up in the DOM, which is discussed in the second half of this
chapter.

XML Security74

03_CH03/DournaeeX 1/24/02 10:31 AM Page 74

Character Data Sections

XML has some restrictions on certain text characters; for example, you
can’t create an element with the following markup characters:

<Expression> 4 < 5 </Expression>

The obvious reason for this is because the processing application that
parses the XML document can’t determine where elements begin and end.
With markup delimeters in the markup itself, it can’t match up the < and
> characters properly. To remedy this, XML defines what are called pre-
defined character entities that are used to represent markup characters
used in element and attribute names. These are shown in Table 3-1.

While these are useful, they can become cumbersome in practice. To
remedy this, the CDATA section is used to add unparsed text to an XML
document. The identifier CDATA stands for character data. The syntax
looks sort of weird, but the idea here is to be able to add arbitrary data to
the XML document without having to worry about using the predefined
character entities. A CDATA section looks like this:

<Expression> <![CDATA [4 < 5]] > </Expression

The idea is that you place the text in between the second [(left bracket)
and first] (right bracket). This example is semantically equivalent to the
first. The CDATA section doesn’t have to be used for just unparsed text. It
can be used for any arbitrary text that the parser should ignore.

More Semantics: The Document Prolog

By now the reader should have a fairly good grasp of XML basics. Some
familiarity with namespaces as well as XML document basics allows the

75Chapter 3 XML Primer

Predefined Character Entity Name Value

> �

< �

" "

& &

' '

Table 3-1

Predefined
Character
Entities

03_CH03/DournaeeX 1/24/02 10:31 AM Page 75

reader to understand most of the content of any given XML document.
There are, unfortunately, more details that must be hashed out. Most of
the following details will not be pursued much further in this book, but
they are essential to understanding and using XML documents outside
the scope of this book.

Most of these details come to us as part of something called the docu-
ment prolog. The term used is quite amusing; one definition for the term
prolog is an introduction to a play or a novel. Unfortunately, XML docu-
ments are never as exciting as live entertainment or a good read, but the
term is accurate. The document prolog is an optional set of declarations
used to add semantics to the current XML document. The document pro-
log always precedes the root element in an XML document and carries
with it some specific syntax constraints. To provide some motivation for
the document prolog, let’s look at some examples. Consider Listing 3-16.

Listing 3-16 is a portion of an XML Signature document. The names of
the elements are unimportant; the only important thing is the structure
of the elements and the attributes and attribute values. Notice that List-
ing 3-16 is littered with URI strings. This doesn’t represent anything too
odd—most XML documents use URIs as attribute values. The URI strings
are valid attribute values and don’t do anything sinister other than make
Listing 3-16 more difficult to read.

What if we had a way to remove these URI strings from the markup to
make the document more readable, but retain the URI values somehow?
A properly constructed document prolog with the necessary declarations
allows us to accomplish this. Let’s give the solution first and then talk
about it. See Listing 3-17.

Some might argue that Listing 3-17 is more difficult to read than List-
ing 3-16. This is only because we haven’t discussed all the funny syntax
yet. Listing 3-16 adds general entity declarations for the URI values—
simply put, replacement text. To see this, consider the isolated entity dec-
laration shown next:

<!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#">

XML Security76

Listing 3-16

A portion of an
XML Signature
document

<Reference xmlns="http://www.w3.org/2000/09/xmldsig#"
URI="http://www.rsasecurity.com" >

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>

</Reference>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 76

The value on the left (dsig) is replaced with the string value on the
right in the actual markup. To specify the general entity within the
markup, the & and ; syntax is used to delimit the general entity name.
These are marked with bold in Listing 3-17. The use of general entities
within the markup can make the XML document much easier to read,
especially when there is a large amount of text that must be repeated
throughout a document. Some of the XML Security standards make use of
general entities to provide for more readable examples.

All three of the general entities shown in Listing 3-17 are inside the
document prolog. The document prolog consists of some mandatory pieces,
which at the very least must include the XML declaration, and the docu-
ment type declaration. The XML declaration is the string value <?xml
version="1.0"?>. If a document prolog is included in an XML docu-
ment, it must begin with this declaration. The XML declaration does little
more than communicate the version number along with some other
semantics such as the document encoding and whether the XML docu-
ment refers to external files. The XML declaration is shown in List-
ing 3-17 on the first line.

Immediately following the XML declaration is the document type dec-
laration. The document type declaration is designed to provide a grammar
for the given XML document. It begins with the string <!DOCTYPE, is fol-
lowed with a string (Signature), and must end with a closing >. Inside
the document type declaration is where markup declarations such as our
general entities belong. (The general entities are actually inside the inter-
nal subset, but we’ll ignore this detail for now.) The reader should observe
the syntax of both the XML declaration and the document type declara-
tion. These declarations do not represent well-formed XML; that is, the
syntax is special and doesn’t use the element and attribute syntax shared

77Chapter 3 XML Primer

Listing 3-17

The use of
general entities in
an XML
document

<?xml version="1.0"?>
<!DOCTYPE Signature

[
<!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#">
<!ENTITY alg "http://www.w3.org/2000/09/xmldsig#sha1">
<!ENTITY val "http://www.rsasecurity.com">

]
>
<Reference xmlns="&dsig;" URI="&val;" >
<DigestMethod Algorithm="&alg;"/>
<DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>

</Reference>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 77

by the main markup. We will return to this point later and see what is
being done to alleviate this funny syntax.

At this point the reader should have a basic grasp of the syntax of the
document prolog. Aside from the general entity (replacement text) decla-
rations, the document prolog usually fulfills a more dignified role as the
chief mechanism for assigning a formal grammar for the current XML
document via something called a document type definition. This term is
deceptively similar to document type declaration, but refers to something
a bit different. The document type definition (DTD) is the collection of
internal and external resources (internal to the current XML document)
that collectively provide a formal grammar for the XML document. This
topic is discussed in more detail in the following section.

Document Type Definition (DTD)

This section discusses the document type definition (DTD), which is the
set of rules and constraints for providing a formal grammar for an XML
document. First we will look at a simple case of a DTD with a fictional
markup language. Following this we will examine parts of a real DTD and
see if we can make our way through it.

The DTD

In an earlier section the reader was challenged to consider Listing 3-1 and
answer the question: “What language is that?” The answer was: “It is a fic-
tional markup language that uses the syntax of XML.”

This fictional language has a fairly well defined syntax described in the
well-formed constraints for XML. It is easy for us to construct legal docu-
ments because we have no rules other than those imposed by the XML
Recommendation. For example, consider Listing 3-18 that uses the same
elements as Listing 3-1.

XML Security78

Listing 3-18

A fictional
language that
uses XML with no
additional
constraints

<Good_Beer>
<Food> Samuel Adams </Food>
<FrenchFries> Guinness </FrenchFries>
<Beers>
<Bad_Beer> Budweiser </Bad_Beer>
<Bad_Beer> Fosters </Bad_Beer>

</Beers>
</Good_Beer>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 78

The reader should be staring blankly at Listing 3-18 and probably
wondering why the elements don’t make any sense. This is intentional—
the syntax of XML is extensible. In fact, with only the well-formed con-
straints, one can argue that the syntax is too extensible. Why? Right now
we can create semantically meaningless element combinations that
amount to gibberish. We have created a fictional markup language, but at
this point we have no way to constrain it in any meaningful way. We can’t
yet tell valid XML documents from invalid XML documents for our par-
ticular language. We don’t have a measure for validity yet so we don’t
know if Listing 3-1 or Listing 3-18 is legal or illegal even though they are
both well-formed.

The term valid has a special meaning in the context of XML. An XML
document is said to be valid if it has been compared against a formal
grammar and has not violated any parts of this grammar. This grammar
is the document type definition and is usually a file somewhere that con-
tains the rules for a particular markup language. Once the document type
definition has been created, we can associate it with a given XML docu-
ment via the document type declaration. To provide some motivation for
this, let’s create a simple grammar for Listing 3-1 that allows us to discern
valid and invalid instances of our fictional markup language. Let’s call
this particular markup language the Food language, where our three food
groups consist of good beers, bad beers, and french fries—a true diet of
champions. Listing 3-19 shows an example of a simple document type def-
inition that lives in a file separate from the main markup file.

The set of constraints shown in Listing 3-19 is roughly equivalent to
the following English description: A document that uses <Food> as its
root element must contain exactly two elements, <FrenchFries> and
<Beers>. The <FrenchFries> element must contain some character
data and the <Beers> element must contain at least one <Good_Beer>
element or <Bad_Beer> element. Both a <Good_Beer> and <Bad_Beer>
element must contain character data.

The syntax used for the document type definition can be quite intuitive,
even though it looks weird. Without explicitly defining each line, the

79Chapter 3 XML Primer

Listing 3-19

Some constraints
for the Food
markup language

<!ELEMENT Food (FrenchFries, Beers)>
<!ELEMENT FrenchFries (#PCDATA)>
<!ELEMENT Beers (Good_Beer+ | Bad_Beer+)>
<!ELEMENT Good_Beer (#PCDATA)>
<!ELEMENT Bad_Beer (#PCDATA)>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 79

reader should be able to follow the given English description and deduce
the meaning of most of the notation used. The fancy name for each line in
Listing 3-19 is element declaration. Each of these element declarations
defines constraints for the element name. Let’s look at the first element
declaration:

<!ELEMENT Food (FrenchFries, Beers)>

Each element declaration begins with the string <!ELEMENT followed
by the element name, and then the content-model and finally the closing
character >. In the previous small example the element name is Food and
the content-model we are declaring for this element is a sequence of child
elements in a specific order. The order is denoted by the order of the ele-
ment names within the parentheses. The first child element must be
FrenchFries and the second (and final) child element must be Beers.
The next element declaration is even simpler:

<!ELEMENT FrenchFries (#PCDATA)>

The previous example simply says that the FrenchFries element
must contain only character data—it cannot contain any elements. The
odd-looking keyword #PCDATA stands for parsed character data. The third
element declaration gets a bit more complex, but it is still readable:

<!ELEMENT Beers (Good_Beer+ | Bad_Beer+)>

The content model here says that the Beers element must contain a
choice (denoted by the | character) of one or more (denoted by the � sym-
bol) Good_Beer or Bad_Beer elements. Cardinality operators such as �,
?, and * are used throughout document type definitions and mean one or
more, zero or one, or zero or more, respectively. We will see these cardinal-
ity operators again in Chapter 4 when we look at the structure of the XML
Signature. The last two element declarations are simply repeats of the
second declaration and merely constrain the Good_Beer and Bad_Beer
elements to only contain character data.

The reader should have a basic understanding of how to put together a
simple grammar for a custom markup language. The reader is challenged
to reconsider Listing 3-1. Is this XML document valid? Does it conform to
the grammar set forth in Listing 3-19? The correct answer is no. The rea-
son is because the <Beers> element contains more than one child ele-
ment—it contains two <Good_Beer> elements and two <Bad_Beer>
elements. Our document type definition constrains the <Beers> element

XML Security80

03_CH03/DournaeeX 1/24/02 10:31 AM Page 80

to a choice of either one, but not both. This is the constraint defined by the
third element declaration.

Now that we have a simple document type definition, we need to asso-
ciate this with an instance of our Food markup language. This is done so
a processing application can find the formal grammar and perform the
check in a seamless way. Luckily, the syntax to accomplish this association
is not difficult. A complete, valid, Food XML document that points to an
external document type definition is shown in Listing 3-20.

Listing 3-20 uses what is called a system identifier (denoted by the
SYSTEM keyword) to inform the processing application of the document
type definition. In this case, the DTD file lives somewhere on a server
called food.com. While a remote URI is shown in Listing 3-20, any valid
URI can be used for the system identifier value. A filename by itself usu-
ally signifies that the DTD file is in the same local directory as the XML
document.

A Real DTD

This section looks at pieces of the DTD for an XML Signature (the entire
DTD is boring). The reader doesn’t have to know much about an XML Sig-
nature yet—the details will be covered in Chapter 4. This section is
intended to give the reader some practice reading through a real DTD
instead of a fake markup language about beer and french fries.

The first piece we are going to look at is the element declaration for the
parent element, which is the <Signature> element, as follows:

<!ELEMENT Signature (SignedInfo, SignatureValue, KeyInfo?, Object*)>

Luckily, this element declaration is simple and is similar to a declara-
tion made in the DTD for the Food markup language. The declaration says
that a <Signature> element must contain a <SignedInfo> element,
<SignatureValue> element, zero or one <KeyInfo> element, and zero
or more <Object> elements. The beauty of this declaration is that it is

81Chapter 3 XML Primer

Listing 3-20

A valid instance
of the Food
markup language

<?xml version="1.0"?>
<!DOCTYPE Food SYSTEM "http://food.com/food.dtd">
<Food>
<FrenchFries> Curly Fries </FrenchFries>
<Beers>
<Good_Beer> Samuel Adams </Good_Beer>

</Beers>
</Food>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 81

fairly easy to read and we don’t yet have to know a thing about an XML
Signature to understand the constraints. Here is another piece, which
puts a constraint on the contents of the <SignatureValue> element
such that it only contains character data and no elements:

<!ELEMENT SignatureValue (#PCDATA)>

Here is another piece of the XML Signature DTD that gives constraints
for the <SignedInfo> element:

<!ELEMENT SignedInfo (CanonicalizationMethod,SignatureMethod,Reference+)>

The constraint simply says that a <SignedInfo> element must con-
tain a <CanonicalizationMethod> element, a <SignatureMethod>
element, and one or more <Reference> elements.

Learning More about DTDs

These small sections only give the reader the absolute basics with regard
to DTDs, and the reader is urged to consult the references section at the
end of this book for more information. Some might argue that we made
the discussion easier than it really is, and in some cases we have simpli-
fied a few things. We omitted attribute declarations and parameter enti-
ties, both of which are found in the actual XML Signature DTD. An
attribute declaration is similar to an entity declaration, but it provides
constraints for attributes instead of entities and a parameter entity is
similar to a general entity, but is intended for use inside a DTD.

XML Schema

Like document type definitions, the XML Schema definition language is
used to describe the structure of XML. One view of XML Schema is an
overhaul or upgrade of DTDs. Newcomers to XML often get frustrated by
the fact that there are two tools for accomplishing roughly the same task.
The frustration continues when it is also learned that DTDs are being
replaced with corresponding XML Schema definitions.

The DTD faces two major problems:

� DTDs aren’t powerful enough to provide sophisticated constraints on
an XML document.

� DTDs don’t use XML.

XML Security82

03_CH03/DournaeeX 1/24/02 10:31 AM Page 82

The first issue sounds plausible, but the second needs a bit of explana-
tion. Reconsider the DTD syntax, specifically any of the previously dis-
cussed element declarations. The careful reader should notice that the
syntax doesn’t correspond to well-formed XML (that is, syntax in which
element declarations are made in between an opening <! and closing >
character). There is no end tag for the element declaration. The syntax of
DTDs is a bit ironic; it can’t be processed in the same way as the document
it constrains. There is really no reason for this. The XML syntax is pow-
erful and general enough to model constraints on instance documents
that use XML. Switching to an XML-based markup language that con-
strains XML document instances is inevitable and makes processing the
formal grammar easier. In addition, XML Schema is extensible in contrast
to the DTD language, which is fixed and part of the XML 1.0
Recommendation.

We will not go into any specifics of XML Schema in this book; the topic
is simply too large and complex to fit inside a single chapter, let alone a
single section. To give the reader a flavor for what XML Schema looks like,
we will present part of the Schema definition from the XML Signature
Recommendation for a quick tour. The reader should visit the references
section for more information on XML Schema. Consider Listing 3-21.

Fortunately, XML Schema is quite intuitive and extensive knowledge of
the schema definition language is not required for discerning some basic
constraints. XML Schema is much more general in its scope than DTDs
and has the features of a programming language.

The two basic types in XML Schema are simple types and complex types.
In general, complex types are types that contain other elements while

83Chapter 3 XML Primer

Listing 3-21

The XML Schema
Definition for the
<Signature>
element

<element name="Signature">
<complexType>
<sequence>
<element ref="ds:SignedInfo"/>
<element ref="ds:SignatureValue"/>
<element ref="ds:KeyInfo" minOccurs="0"/>
<element ref="ds:Object" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="Id" type="ID" use="optional"/>

</complexType>
</element>

03_CH03/DournaeeX 1/24/02 10:31 AM Page 83

simple types cannot. In Listing 3-21, the element <Signature> is defined
to be a complex type that contains a sequence of four elements: <Signed-
Info>, <SignatureValue>, <KeyInfo>, and <Object>. The last two
elements, <KeyInfo> and <Object>, have additional constraints
declared using attributes that provide the same functionality as the DTD
cardinality operators. Both of these elements are optional and <KeyInfo>
is constrained to a single instance while <Object> is unbounded. Finally,
there is also a provision for an attribute value called Id, which is also
optional.

Processing XML
The reader should now have a fairly good idea of how XML documents are
structured and validated, and should understand the difference between
a markup language and a meta-language. Given a document that uses
XML markup, the reader should be able to tell if it is well formed and
should be able to discern some basic validity constraints with the help of
a DTD. This section of the primer marks a shift from examining the syn-
tax of XML to understanding how XML is processed. XML documents are
cool to look at and fun to create, but unless we understand how they are
processed and dealt with, the previous section is more a thumb-twiddling
exercise rather than something practical.

The next few topics on our plate include understanding the Document
Object Model (DOM), which is an API for doing practical things with
structured documents, as well as the XPath data model, which is used in
the XML Security standards. We will also look at some source code in Java
that shows how to use the Apache Xerces toolkit to do a few practical
things with XML documents such as parse them and output basic
information.

The Document Object Model (DOM)

The DOM is an Application Programming Interface (API) meant for struc-
tured documents. The reader may be wondering why we are discussing an
API at this stage in the book and may also wonder about the relevance of
this section altogether. The reason the DOM is important is because it is
highly standardized and represents a widely used and accepted program-

XML Security84

03_CH03/DournaeeX 1/24/02 10:31 AM Page 84

ming model for structured documents. This makes the API important
because most XML Security implementations (XML Signature or XML
Encryption) will have support in some way or another for the DOM; in
essence, these implementations are usually written directly on top of the
DOM and rely on its functionality and semantics. Because of this, it is an
important building block in XML Security.

To support standardization, there are various levels of the DOM. The
term level is akin to a version number for the DOM, where higher levels
represent increased functionality. Our discussion here will include the
features and behavior found only in DOM Level 1, and more specifically
DOM Level 1 Core, which is the smaller subset of DOM Level 1.

Structured Documents vs. Structured Data

The reader may notice that we have not explicitly mentioned XML docu-
ments, but instead began this section using the more general term struc-
tured documents. The reason for this change in terminology is related to
the definition of the Document Object Model. The DOM is an API designed
for structured documents in general and isn’t an API exclusive to XML
documents. For example, the DOM can also model HTML documents
using the same interfaces.

Our focus with the DOM will be XML documents, and because of this,
the more specific term structured data is slightly more appropriate. The
term document can be confusing because a document as such usually
implies some sort of presentation coupling such as fonts, colors, graphics,
or multimedia. These types of additional presentation semantics are out of
scope for XML documents that represent security objects such as an XML
Signature or encrypted XML element. We will look at the DOM in terms
of structured data, instead of its wider scope of structured documents.

DOM Interfaces

DOM is a collection of interfaces for manipulating structured data in
memory using objects. We are not throwing out a new term; the term
object is the same as that found in an object-oriented programming lan-
guage such as C�� or Java. Simply put, given arbitrary structured data,
the DOM specifies interfaces that can be used to access and manipulate
this data at a programming language level. A picture of this process is
shown in Figure 3-2.

Figure 3-2 shows a simplified view of how the DOM looks at structured
data. The DOM uses a tree-like structure to model the relationships

85Chapter 3 XML Primer

03_CH03/DournaeeX 1/24/02 10:31 AM Page 85

between its interfaces, but does not constrain the actual implementation
to a tree data structure. Put another way, the DOM appears to act like a
tree from the outside, but a particular implementation of the data struc-
tures is not constrained to a tree structure. A tree structure is an obvious
model for structured data such as an XML document. The parent element
represents the root of the tree and each child element represents child
nodes of the root and so on. A better picture of the scope of the DOM is
shown in Figure 3-3.

In Figure 3-3 a new box appears with a question mark inside of it. This
signifies that the actual implementation of the DOM is out of scope. A
direct relationship between the tree-like interface provided by the DOM
and the underlying implementation isn’t necessary. DOM merely specifies
interfaces; the underlying implementation is up to the vendor that takes
on the task of creating a usable DOM API. The outside of the DOM—the
user-accessible API—is fixed and has a logical structure that matches
that of a tree. The inside—the actual implementation of the DOM inter-
faces—is not constrained and may or may not match the outer tree view.
The idea here is that the DOM be a portable interface. For example, it may
be desirable to add a DOM interface over some other legacy API that deals
with structured data. Because of this, the DOM explicitly separates itself
from the implementation of its objects.

This key idea is important to remember; often the DOM will appear
clunky and obtuse for basic tasks. The reason is because it is not designed
with any one document format in mind, but instead for arbitrary struc-
tured documents, which may or may not include XML documents.

Inheritance View vs. Flattened View

We will examine the DOM as it is specified for an object-oriented pro-
gramming language such as Java. DOM APIs exist for many scripting lan-

XML Security86

<Food>

Structured Data DOM Document

<FrenchFries>

Curly Fries

 </FrenchFries>

<Beers>

<Good_Beer>

Samuel Adams

</Good_Beer>

 </Beers>

Figure 3-2

A simplified view
of a DOM
document object

03_CH03/DournaeeX 1/24/02 10:31 AM Page 86

guages and as such exist in two different views: a flattened view and an
inheritance view. Not all languages support object-oriented features such
as inheritance and this creates some redundancy in the API. This redun-
dancy adds to the feature set in terms of extra functions and can cause
confusion. The flattened view is out of scope for our discussion and the
reader should visit the references section at the end of this book for more
information on the DOM. All of the upcoming code examples will be given
in Java, and, because of this, our primary view of the DOM will be the
inheritance view.

Complete understanding of the inheritance view of the DOM comes
from understanding just two objects: Node and Document. It is difficult to
say which object is more fundamental; a clear understanding of both is a
necessity for doing anything useful with the DOM. The logical structure of
the DOM is a tree, and every object in this conceptual tree is some type of
Node object. Consider Figure 3-4.

The first thing to notice about Figure 3-4 is that every node in the
conceptual tree has been replaced with a concrete interface called
org.w3c.dom.Node. The name of the object comes from the Java lan-
guage binding for the DOM. A given language binding for the DOM is
defined by the W3C and doesn’t refer to a given DOM implementation or
API. All compliant DOM implementations for Java must use the
org.w3c.dom.* packages that define the DOM interfaces. Our focus
with the DOM will be Java and it is appropriate the use the fully qualified
interface names at this point in time.

The second thing to notice about Figure 3-4 is that all of the objects
that represent the structured document in the figure are identical. All
nodes are org.w3c.dom.Node objects. This is only true from an object-
oriented subtype relationship. This is difficult to describe, but easy to show

87Chapter 3 XML Primer

<Food>

Structured Data DOM Implementation

<FrenchFries>

Curly Fries

 </FrenchFries>

<Beers>

<Good_Beer>

Samuel Adams

</Good_Beer>

 </Beers>

DOM Document

?

Figure 3-3

The scope of the
DOM

03_CH03/DournaeeX 1/24/02 10:31 AM Page 87

with a picture. Figure 3-5 shows the true objects for the sample XML doc-
ument, and Figure 3-6 shows the parent-child relationships of the objects.

Figure 3-6 shows the parent child relationships of some common
org.w3c.dom.Node subtypes. Not all possible subtypes are shown, and
the most common ones are marked in bold. The most important thing to

XML Security88

<Food>

Structured Data

DOM Document

<FrenchFries>

Curly Fries

 </FrenchFries>

<Beers>

<Good_Beer>

Samuel Adams

</Good_Beer>

 </Beers>

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

</Food>

Figure 3-4

Node objects in
the DOM tree

<Food>

Structured Data

DOM Document

<FrenchFries>

Curly Fries

 </FrenchFries>

<Beers>

<Good_Beer>

Samuel Adams

</Good_Beer>

 </Beers>
 </Food>

org.w3c.dom.Element

org.w3c.dom.Element

org.w3c.dom.Text

org.w3c.dom.Element

org.w3c.dom.Document

org.w3c.dom.Element

org.w3c.dom.Text

Figure 3-5

DOM objects

03_CH03/DournaeeX 1/24/02 10:31 AM Page 88

notice about Figure 3-6 is that all of the classes shown are subclasses of
org.w3c.dom.Node and because of this they properly fulfill the subtype
relationship. Each subtype of org.w3c.dom.Node is designed to repre-
sent something in the structured document. For example, the
org.w3c.dom.Element type represents elements in an XML document
and the org.w3c.dom.Attr type represents attributes in an XML docu-
ment. The list goes on; there are over 15 different subtypes of
org.w3c.dom.Node. We will not cover them all here, because only a few
have immediate interest to us. The reader should refer to the references
section for more complete information on the DOM.

The careful reader should notice that there appears to be a mismatch
between Figure 3-5 and the structured data shown. That is, there is an
extra org.w3c.dom.Document node at the root of the conceptual tree
that has no obvious match to anything in the XML document shown in
the figure. This extra node is the main entry point into the structured

89Chapter 3 XML Primer

org.w3c.dom.Document org.w3c.dom.Attr

org.w3c.dom.Text

org.w3c.dom.Element org.w3c.dom.Node.Processing
Instruction

org.w3c.dom.Node.Comment org.w3c.dom.Node.CharacterData

org.w3c.dom.NodeFigure 3-6

DOM class
hierarchy

03_CH03/DournaeeX 1/24/02 10:31 AM Page 89

data and the real root of the XML document is actually the first child in
the DOM tree.

This point showcases the importance of the org.w3c.dom.Document
object, which represents the entire structured document. Once an
org.w3c.dom.Document object is obtained for a given structured docu-
ment, the user can access various org.w3c.dom.Node objects that com-
prise the document tree. Any use of the DOM to model an existing
structured document begins with the creation of a Document object. Iron-
ically, the actual bootstrapping of the Document object is left out of scope
—it is the responsibility of the specific DOM implementation to provide
the user with the necessary methods to create an instance of
org.w3c.dom.Document. The next section shows how this bootstrapping
process works with the Xerces XML Parser.

Bootstrapping with Xerces

Our first goal in this section is to use the Xerces XML Parser1 (which has
support for the DOM language bindings) to create an org.w3c.dom.
Document object from some sort of real XML data. Once we create the
org.w3c.dom.Document object, we can traverse the logical tree struc-
ture and get information about the XML document. Consider Listing 3-22.

The first things to note about Listing 3-22 are the import statements at
the top. The previously discussed DOM Java language bindings and the
Xerces DOM parser implementation are both added here. The two sepa-

XML Security90

Listing 3-22

Using Xerces

// Import the DOM Java language bindings
import org.w3c.dom.*;
// Import the DOM parser implementation
import org.apache.xerces.parsers.DOMParser;
class CodeListing31 {

public static void main (String args[]) throws Exception {
// Make a new DOM Parser
DOMParser domParser = new DOMParser();
// Parse an input document
domParser.parse("food.xml");
// Get the org.w3c.dom.Document node
Document documentNode = domParser.getDocument();
// Get the first child
Element rootNode = (Element)documentNode.getFirstChild();
// What is the name?
System.out.println("Root element: " + "<"+ rootNode.getTagName()+">");

}
}

1Xerces can be downloaded for free at htp://xml.apache.og.

03_CH03/DournaeeX 1/24/02 10:31 AM Page 90

rate import statements showcase the separation of the parser imple-
mentation from the DOM interfaces that are specified in the language
binding.

Once the proper DOM interfaces and the parser implementation have
been imported, the actual constructor is called for the DOMParser class.
This call and the next two calls are not relying on the DOM API; they are
calls that are proprietary to the Xerces processor. In fact, the only calls in
the code listing that use the DOM API are the second to last and last func-
tion calls.

Once an instance of the DOMParser class has been created, a call to the
parse() function occurs. This is a blocking call. In other words, the pro-
gram is halted while the DOM Parser reads from the specified XML file.
This may not seem like a big deal, but when the size of the XML file grows
to hundreds or thousands of lines this call has the potential to take a
great deal of time.

Once the parsing is complete we are ready to obtain an
org.w3c.dom.Document object with a call to getDocument(). This call
returns the org.w3c.dom.Document object as specified by the DOM. The
reader may think of this call as the transition point from the proprietary
Xerces parser to the standard DOM APIs. From here the idea is to use
only function calls that are specified by the DOM.

The first call obtains the actual root element in the XML document. In
Listing 3-22 we are assuming that the input is the food XML document
shown in Figure 3-5; the call to getFirstChild() actually obtains the
org.w3c.dom.Element object that corresponds to the <Food> element.
The actual string text in between the tag markup (< and >) in the input
document is printed out with the final getTagName() call. The result of
Listing 3-22 is the stunning output: <Food>.

This is hardly useful, but the sample does showcase how the logical
structure of the DOM works. When using the DOM it is often desirable to
rely on recursive semantics to traverse a structured document. Consider
Listing 3-23, which prints out all of the org.w3c.dom.Element nodes
and org.w3c.dom.Text nodes in the food.xml document.

All of the gory details are in the printNode() function. The idea here
is to give this function an org.w3c.dom.Node object and it will deter-
mine the type of node and then make a printing decision. In Listing 3-23
we pass the first child of the org.w3c.dom.Document node (the first
child is the document element) directly into the printNode() function.
The first thing done inside printNode() is to determine which type of
node we have; this function is trivial and only deals with two types of

91Chapter 3 XML Primer

03_CH03/DournaeeX 1/24/02 10:31 AM Page 91

nodes, so the choice is either Node.TEXT_NODE or Node.ELEMENT_NODE.
These static identifiers are simply integers used by the DOM implemen-
tation to distinguish between different node types. If our node is an ele-
ment, we first determine the name using getNodeName() and then print
this out.

Once the parent element has been printed, the child nodes are next
in line. A simple for loop is used to iterate through these and print them
out one by one. The object used to hold the list of nodes is the
org.w3c.dom.NodeList object. This object is a bit unique in its seman-
tics. At first glance this object appears to model a list of nodes that can be
accessed like an array. For example, in Listing 3-23 we use a for loop to
iterate through this org.w3c.dom.NodeList object with an item()

XML Security92

Listing 3-23

Some recursion
with the DOM

import org.w3c.dom.*;
// Import the DOM parser implementation
import org.apache.xerces.parsers.DOMParser;
class CodeListing32 {
public static void main (String args[]) throws Exception {
// Make a new DOM Parser
DOMParser domParser = new DOMParser();
// Parse an input document
domParser.parse("food.xml");
// Get the org.w3c.dom.Document node
Document documentNode = domParser.getDocument();
// Get the first child
Element rootNode = (Element)documentNode.getFirstChild();
// Let’s print out all the element names and text nodes
printNode(rootNode);

}
public static void printNode(Node nodeToPrint) {
int type = nodeToPrint.getNodeType();

if (type == Node.ELEMENT_NODE) {
String nodeName = nodeToPrint.getNodeName();
System.out.println("Element Node Found: <" +nodeName+">");
NodeList childNodes = nodeToPrint.getChildNodes();
if (childNodes != null) {
for (int i=0; i<childNodes.getLength(); i++) {
printNode(childNodes.item(i));

}
}

}
if (type == Node.TEXT_NODE) {
String textValue = nodeToPrint.getNodeValue();
System.out.println("Text Node Found: " +textValue);

}
}

}

03_CH03/DournaeeX 1/24/02 10:31 AM Page 92

function that appears to give us the contents at each position in the node
list. Despite the way this object looks, it does not have perfect list-like or
array-like semantics. This can be confusing for newcomers to the DOM.

The org.w3c.dom.NodeList is a linear view of the document tree. This
means that if you add a node to an org.w3c.dom.NodeList, you are
adding a node to the tree. Similarly, if you remove a node, a node gets
removed from the tree. As the tree gets updated, the NodeList changes;
there is no need to update the org.w3c.NodeList—it will change by itself.
NodeLists are useful when it is desirable to do operations that require
sequential access (such as printing out the children of a given node).

The second case is that of a text node. Text nodes are pervasive through-
out even the simplest XML document (such as ours) because white space
is considered significant in XML documents. This means that the
printNode() function will be called more times than the visible contents
of food.xml. Further, this means that we lied a bit in Figure 3-5. Fig-
ure 3-5 shows the document structure not counting white space in the
original document. In other words, the tree shown in Figure 3-5 has white
space nodes (which are proper org.w3c.dom.Node subclasses) removed
for the sake of clarity. For example, the reader can see how the white space
is counted by looking at the output of Listing 3-23, shown in Listing 3-24.

There are a total of seven org.w3c.dom.Text nodes found in the
food.xml document, even though only two are apparent (Curly Fries
and Samuel Adams).

Beyond DOM

The previous two sections represent a whirlwind tour of a common para-
digm for processing XML data. The DOM and its tree structure model is
only one way of processing structured documents. The tree structure

93Chapter 3 XML Primer

Listing 3-24

The output from
Listing 3-23

Element Node Found: <Food>
Text Node Found:
Element Node Found: <FrenchFries>
Text Node Found:

Curly Fries
Text Node Found:
Element Node Found: <Beers>
Text Node Found:
Element Node Found: <Good_Beer>
Text Node Found:

Samuel Adams
Text Node Found:
Text Node Found:

03_CH03/DournaeeX 1/24/02 10:31 AM Page 93

model is easy to understand and straightforward to implement, but it is
not always ideal for every practical situation. The previously mentioned
blocking parse() call in Xerces can present a problem for memory con-
strained environments; every time a document is parsed, a logical struc-
ture is built. Applications that only need access to a single node of the tree
must incur a large performance penalty in terms of memory.

To avoid this type of performance tradeoff, another processing para-
digm is used that sees the structured document as a stream of events. For
example, instead of building a logical structure in memory that matches
the document, the document is seen as a continuous stream of pieces and
components. Each piece of the structured document (this can be an ele-
ment or attribute) usually represents some sort of event and something
important is done upon the receipt of the event. XML documents
processed as a stream have a performance benefit because no logical in-
memory structure is created and the programmer has the flexibility to
store the pieces that are needed as they come. The standard API for this
type of processing is called the Simple API for XML Processing (SAX). We
will not discuss the SAX or its use in this book, but it should be considered
for applications that don’t want to be locked in to the more memory inten-
sive DOM paradigm. The reader should visit the references at the end of
this book for more information on SAX.

The XPath Data Model

This next section marks a shift from the practical DOM API to the more
conceptual XPath data model. The DOM structure model is intended to be
an API for applications that process XML. The XPath data model, while
similar to the DOM in its specification, is intended to be a conceptual
structure model for an XML document.

There are two potentially confusing things about XPath and the XPath
data model. First, the XPath data model appears to be very similar to the
DOM structure model. Both data models use a logical tree that relies on
nodes to represent pieces of the input document (such as elements and
attributes). Further, they also have similar constructs for representing a
collection of nodes. The key idea about the XPath data model is that it is
only conceptual and exists as a standard way of referring to an XML doc-
ument from an intellectual perspective. This means it gets used a lot in
the XML standards and drafts, including the XML Security standards.
For example, understanding the XPath data model is useful in under-

XML Security94

03_CH03/DournaeeX 1/24/02 10:31 AM Page 94

standing how the XML Signature Recommendation processes data as
XML. The DOM model can’t be directly used in this case because it is an
actual API and specifying XML standards in terms of the DOM would
tightly couple a given standard to a mode of implementation, which is out
of scope for most XML-related standards.

The second confusing thing about XPath is that it is also a specification
of a path language for traversing an XML document. This generally adds
to the muddle because most people use XPath to write expressions for
transforming and selecting pieces of an XML document. This will not be
our main focus here; the data model that XPath provides is what is most
important because it allows us to understand how XML standards view
an XML document. Once the data model is understood, the reader is in
good shape for understanding how XML documents are transformed.

XPath Nodes

The main construct in the XPath data model is the concept of a node. A
node represents an actual piece of an XML document. The difference
between a DOM-based org.w3c.dom.Node and an XPath node is the
scope of what can be represented. An XPath node has a smaller scope in
most respects and contributes to a slightly simplified conceptual view of
an XML document.

For example, the DOM has an interface called org.w3c.dom.Entity-
References that extends org.w3c.dom.Node and can be used to model
entity references in the input XML document. This enables a user to count
the number of entity references in an input document—the point being
that entity references show up in the DOM’s view of an XML document.
As another example, the DOM has an interface called org.w3c.dom.
DocumentType that also extends org.w3c.dom.Node. This interfaces
allows for access to information inside the document prolog, specifically
the DTD, enabling a user to read parts of the DTD and print them out.
Again, the DTD is in DOM’s view of the XML document.

The situation is a bit different for the XPath data model; there are only
seven conceptual node types. Because there are more than seven possible
constructs in an XML document, XPath can’t model everything and the
view is necessarily simplified. The data model defined by the XPath Rec-
ommendation consists of the following seven node types: root nodes, ele-
ment nodes, text nodes, attribute nodes, namespace nodes, processing
instruction nodes, and comment nodes. Our aim is to eventually describe
how a given XML document gets chopped up into these node types. That

95Chapter 3 XML Primer

03_CH03/DournaeeX 1/24/02 10:31 AM Page 95

is, we are about to describe the process by which the XPath data model is
applied to a given XML document.

Before we discuss the actual nodes themselves, we need to approach
something more fundamental, called document order, which is the order in
which the XPath data model is applied.

Document Order

The term document order refers to the order in which the various node
types are created, based on a real, physical XML document. This ordering
is actually quite straightforward and simple, and can be best described as
a list of rules that provide the “cooked” view of the XML document. Docu-
ment order is summarized as follows:

Document Order

Nodes are organized in the order in which they appear in the XML repre-
sentation with these constraints:

1. The root node comes first.

2. Element nodes occur before their children.

3. The attribute and namespace nodes of an element occur before the
children of the element.

4. The namespace nodes occur before the attribute nodes.

5. The relative order of namespace nodes and attribute nodes is
implementation dependent.

Everything about document order is straightforward except for the
third point. First, XPath contrasts the DOM in that it respects namespace
nodes, where DOM Level 1 just considers namespaces to be attributes
(which they properly are). Further, an element node has an associated set
of attribute nodes and namespace nodes that aren’t defined to be proper
children of the associated element node. Attribute nodes and namespace
nodes are considered to be associated with or properties of a given ele-
ment node. This view makes a lot of sense because visually an element
and its attributes are adjacent in the XML document. The last point here
is that document order looks at an XML document after general entities
have been expanded. This is where some of the simplification occurs. The
XPath data model doesn’t have an entity node and simply treats replaced

XML Security96

03_CH03/DournaeeX 1/24/02 10:31 AM Page 96

entities as text. Remember, with the XPath data model, whatever was in
your original XML document can only be seen as one of seven node types
(six really, since the root node is fixed).

Now it is time to examine the seven node types and see how they are
created from an example XML document. We will attempt to form the
XPath data model view of Listing 3-25, which is an updated version of an
earlier food XML document.

In Listing 3-25 we have updated our food XML document with some
comments, a default namespace, and some attributes. From here, let’s look
at the node types in detail and see what we can come up with for an XPath
data model.

Root Node

Only one root node represents every XML document in the XPath data
model in its entirety (not just the document element). This point is often
confusing for readers, many ask: “Why have a root node, when we really
want to get to the document element of the XML data?” An easy way to
explain this is to realize that other items (such as the comments shown)
appear as siblings to the document element. This means that if we are to
maintain our logical tree structure, we need a conceptual root node to hold
the rest of the nodes that are neither parent nor child to the document ele-
ment (root element). In Listing 3-25 there is one root node with three chil-
dren (in document order): a comment node, an element (the document
element), and a comment node. There is no xml declaration node, so this
piece of information is also lost in the XPath data model view. Our con-
ceptual XPath tree thus far is shown in Figure 3-7.

97Chapter 3 XML Primer

Listing 3-25

Updated “food”
XML document

<?xml version="1.0" encoding="UTF-8"?>
<!-- Here is a healthy meal -->
<Food xmlns="http://food.com">
<FrenchFries Size=Large" Salted="True">
Curly Fries

</FrenchFries>
<Beers Size="Pint">
<Good_Beer>
Samuel Adams

</Good_Beer>
</Beers>

</Food>
<!-- don’t forget to always drink good beer -->

03_CH03/DournaeeX 1/24/02 10:31 AM Page 97

Element Node

Element nodes represent actual elements in the physical XML document.
There is nothing too tricky here. The only other thing to note is that the
possible child nodes of an element node includes element nodes, comment
nodes, processing instruction nodes, and text nodes. All of these nodes
haven’t been discussed yet, but we will get to them.

If we add element nodes to our XPath tree, the result looks something
like Figure 3-8. A total of three element nodes are added, one for each ele-
ment in Listing 3-25 (excluding the root element).

Attribute Node

Attribute nodes are slightly more confusing than element nodes. The rela-
tionship between an element and its attributes can be thought of as asso-
ciation. An element may have attribute nodes associated with it. The
confusing part is that the XPath Recommendation defines the element
node-bearing attributes to be the parent node of the attributes, but the
attributes are not child nodes of the element node. This sentence can be
confusing because the term parent when used in discussions of a tree
structure usually logically implies the presence of children. XPath uses
the term set to describe the attributes associated with a given element—
we will expand upon this set idea and use such a notation for our
expanded XPath view of Listing 3-25, which now contains attributes. This
is shown in Figure 3-9.

The reader should notice that in Figure 3-9 the relationship of the
attribute sets to each element. Visually, it makes sense to call the element

XML Security98

Root
Node

Element
Node

Comment
Node

Comment
Node

Figure 3-7

The beginnings of
the XPath tree for
Listing 3-25

03_CH03/DournaeeX 1/24/02 10:31 AM Page 98

bearing the attributes a parent of the attributes, but it should also be
clear that the attributes are not proper children of the element because
they are not really intermediate nodes in the logical tree.

Another thing to note is that attribute nodes only appear in the XPath
view for attribute nodes explicitly specified in the physical XML document
being modeled (or those specified with default values in the DTD). A DTD
can specify that attributes can take on default values. This isn’t some-
thing that was covered earlier, and the reader is urged to visit the refer-
ence section at the end of the book for more information about DTDs.

99Chapter 3 XML Primer

Root
Node

Element
Node

Comment
Node

Comment
Node

Element
Node

Element
Node

Element
Node

Figure 3-8

Adding element
nodes to the
XPath tree

03_CH03/DournaeeX 1/24/02 10:31 AM Page 99

In short, there can be some ambiguities between XPath views of an
XML document because XPath doesn’t require that the DTD be read (the
XML Parser used may not support it). This means that it is quite possible
for two identical XML documents to produce different XPath nodes based
on the presence or absence of the DTD.

Namespace Nodes

The treatment of a namespace node is similar to an attribute node
because namespaces are spiced up attributes from an XML syntax stand-
point. Similarly, a given element node is associated with a set of name-
space nodes. There is one namespace node for every namespace that is in
scope for the current element. For example, if a namespace node was

XML Security100

Root
Node

Element
Node

Comment
Node

Comment
Node

Element
Node

Attribute
Node

Attribute
Node

Element
Node

Element
Node

{ {,
Attribute

Node
Attribute

Node{ {,

Figure 3-9

Adding attributes
to the XPath tree

03_CH03/DournaeeX 1/24/02 10:31 AM Page 100

declared on an ancestor node and is still in scope (it hasn’t been overrid-
den or undeclared), then there is a namespace node for this namespace.

Finally, the additional qualifier here is that the namespace nodes
should be first in the set; for the picture we will use the same set for both
the attribute nodes and namespace nodes. Listing 3-25 only has one
namespace node, the default namespace. This namespace, however, is in
scope for the entire food XML document. This means that there is a name-
space node for every element node in our picture. The updated picture is
shown in Figure 3-10.

In Figure 3-10 the picture looks a bit skewed as we try to fit everything
together. The reader should notice that we have put the namespace nodes
first in the associated set. This has to do with document order and the con-
straint that says namespace nodes must occur before attribute nodes.

Text Node

Text nodes represent any sort of text in the document. There is an XPath
text node for all text in the document except for text inside comments, pro-
cessing instructions, and attribute values. The XPath view of an XML doc-
ument simplifies text defined using predefined character entities or
residing in CDATA sections. That is, an XPath text node doesn’t tell you if
the text came from a predefined character entity or a CDATA section. This
information is essentially lost; XPath models all text the same way. Con-
sider the following short example:

<Sample>
<element1> I love XPath! </element1>
<element2> <![CDATA [I love XPath]]> </element2>

</Sample>

XPath sees both <element1> and <element2> as an element node
and a text node; the presence of the CDATA section is lost. From this it
follows that with the XPath view of an XML document it can’t be deter-
mined if a given text node had its origins as a CDATA section or simply
normal markup. Figure 3-11 shows the final picture for our XPath view of
Listing 3-25.

In Figure 3-11 two text nodes were added. One text node corresponds to
the Curly Fries text and one text node corresponds to the Samuel
Adams text.

101Chapter 3 XML Primer

03_CH03/DournaeeX 1/24/02 10:31 AM Page 101

XML Security102

Root
Node

Element
Node

Comment
Node

Comment
Node

Element
Node

Element
Node

Attribute
Node

Attribute
Node

Element
Node

{ {,,

Namespace
Node

Namespace
Node

{ {

Namespace
Node{ {

Attribute
Node

Attribute
Node{ {,,Namespace

Node

Figure 3-10

Adding
namespace nodes
to the XPath tree

Processing Instruction Node

This node is rather boring for our purposes. In short, XPath can model any
processing instruction in the physical XML document except for process-
ing instructions inside the DTD. There is a single processing instruction
node for every actual processing instruction found inside the body of the
document.

03_CH03/DournaeeX 1/24/02 10:31 AM Page 102

103Chapter 3 XML Primer

Root
Node

Element
Node

Comment
Node

Comment
Node

Element
Node

Element
Node

Attribute
Node

Attribute
Node

Element
Node

Text
Node

Text
Node

{ {,,

Namespace
Node

Namespace
Node

{ {

Namespace
Node{ {

Attribute
Node

Attribute
Node{ {,,Namespace

Node

Figure 3-11

The final XPath
view for Listing
3-24

03_CH03/DournaeeX 1/24/02 10:31 AM Page 103

Comment Node

We have already seen this node in action. There is one comment node for
every actual comment found in the physical XML document. Again, any
comment can be modeled except for comments inside the DTD.

XPath Node Set

Understanding the XPath data model is important because of a single
term: node-set. This term is used throughout the XML Security standards
and is an unordered collection of XPath nodes. Now that you know what
the possible node types are, you also now know what a node-set is in this
context. The node-set is simply an XPath tree that has been serialized
from a tree to a flat list. The reader should also understand that the stan-
dard org.w3c.dom.NodeList object cannot be used to model an XPath
node-set without some changes. A node-set is a proper list, while the
org.w3c.dom.NodeList is a linear view. This is an important distinc-
tion to make because, at first glance, the two concepts appear to be inter-
changeable.

More on XPath

The main focus of the XPath Recommendation is not the previous data
model. The data model is actually the last topic in the XPath Recommen-
dation (some would consider this odd, since it is foundational for XPath).
XPath is more concerned with the language and function library for tra-
versing through an XML document and selecting document subsets. This
discussion, while interesting, falls out of scope for our goals in this book.
The reader will see some simple (largely self-explanatory) XPath expres-
sions in Chapters 5 and 6 that perform some basic selection, but an in-
depth tutorial on the matter is left to another resource. The reader should
visit the references section for more information on XPath.

Chapter Summary
This chapter has been an XML primer on XML divided into two subsec-
tions: syntax and processing. The chapter began with discussing the fun-

XML Security104

03_CH03/DournaeeX 1/24/02 10:31 AM Page 104

damentals of XML syntax including a discussion of elements, attributes,
and documents. Well-formed XML was then discussed with some intro-
ductory material on XML namespaces and document type definitions,
including a small amount of information on XML Schema. The processing
section focused on two main topics: The Document Object Model and the
XPath data model. Both are fundamental for processing XML as a logical
tree structure. The distinction was made between the DOM, which is a
practical API, and the XPath data model, which is a conceptual tree model
used in XML standards. This distinction was noted as important because
both models use a node-based tree structure, but have a different purpose
and semantics.

105Chapter 3 XML Primer

03_CH03/DournaeeX 1/24/02 10:31 AM Page 105

