IAII of dW | I : Search

IBM home | Products & services | Support & downloads | My account

IBM developerWorks: Security : Security articles developerWorks

Web server security =
e-mail it!

Securing dynamic Web content Contents:

Introduction
Tom Syroid (dwcomments@syroidmanor.com)

Contract writer

September 2002 Securing server side
includes

General considerations

This article detail s how to secure dynamic content on an Apache Web server. Topics covered Securing CGI applications
incl u_de general seculnty issues pertaining to dynamic content, securing Seryer Side Includes, Reducing CGI risks with
configuring Apache's Common Gateway |nterface, and wrappering dynamic content. The

articleis targeted primarily at Webmasters and system administrators responsible for Wrappers
maintaining and securing a Web server; however, anyone with aneed or desire to server Summary
dynamic content will benefit from the topics covered. A basic understanding of Linux

commands, permissions, and file structures is assumed. Resources
About the author
Introduction Rate this article
Once upon atime, the World Wide Web was arelatively static place. The Web server's sole function
was to simply deliver arequested Web page, written in HTML, to aclient browser. Over time, Related content:
developers started looking for ways to interact with users by providing dynamic content -- that is, Subscribe to the
content that displayed aform or executed a script based on user input. Thus Server Side Includes devel operWorks newsletter
(SSI) and the Common Gateway Interface (CGI) were born. More dW Security
resources

A Server Side Include page is typically an HTML page with embedded command(s) that are
executed by the Web server. An SSI pageis parsed by the server (a"norma” Web page is not), and
if SSI commands are found they are executed before the resultant output is delivered to the requesting client. SSI is used in
situations that demand a small amount of dynamic content be inserted in a page, such as a copyright notice or the date. SSI can also
be used to call a CGlI script; however, there is a performance penalty associated with SSI. The server must parse every page
designated as SSI-enabled, which is not an optimal solution on a heavily loaded Web server.

The CGl isastandard for communication between a program or script, written in any one of several languages, and a Web server.
The CGI specificationis very simple: input from aclient is passed to the program or script on STDI N (standard input). The
program then takes that information, processes it, and returns the result on STDOUT (standard output) to the Web server. The Web
server combines this output with the requested page and returnsiit to the client as HTML. CGI applications do not force the server
to parse every requested page; only pages containing CGl-recognized arguments involve further processing.

This article istargeted at Webmasters and system administers responsible for securing a Web server configured to provide dynamic
content to clients. It details general security issues related to SSI- and CGl-enabled content, reducing CGI risks with wrappers, and
some brief language-specific caveats. This article does not cover the configuration steps required to enable SSI or CGl.
Configuration examples provided are based on the latest 1.3 version of Apache, which at the time of thiswriting is 1.3.26. In

addition, the following is assumed:

« Your network is secure, behind afirewall, and the server itself isin a controlled environment.

. The operating system has been properly secured and all unnecessary services are disabled.

. The Apacheuser and gr oup directives are correctly set, and appropriate permissions assigned.

. The ServerRoot and log directories are protected.

. User overrides are disabled.

. Default access has been disabled, and access opened for only those system directories designated "public". For example, on
a system configured to host user Web pages from /home/username/public_html, Apachesht t pd. conf configuration file
should contain the following directives:

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/security/
http://www-105.ibm.com/developerworks/papers.nsf/dw/security-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=article
http://www.ibm.com/developerworks/security/
http://www.ibm.com/developerworks/security/
mailto:dwcomments@syroidmanor.com
http://www.apache.org/

Server Name wWww. Si t ename. com
UserDir public_htm

<Directory />
Order deny, al | ow
Deny from al |
</Directory>

<Di rectory /hone/*/public_htn >
Order deny, al | ow
Al l ow from al |
</Directory>

In other words, in order to fully absorb the material discussed in this article, the reader should have a good working knowledge of
general Web server security, installing and configuring Apache, Apache modules, Apache's key configuration directives, the role of
Apache's. ht access file, how to read log files, UNIX file permissions, and basic system administration. Readers should also be
familiar with the syntax, commands, and functions of whatever programming language they intend to use to create CGl
applications.

See the Resources section of this article for alist of useful online resources.

General considerations

The very first question a Web server administrator must confront is, "Do | really want/need to provide dynamic content from my
server?' While dynamic content has allowed for a diverse range of user interaction and become a de facto standard for most large
Web sites, it remains one of the largest security threats on the Internet. CGI applications and SSI-enabled pages are not inherently
insecure, but poorly written code can potentially open up dangerous back doors and gaping holes on what would otherwise be a
well-secured system.

The following are the three most common security risks CGI applications and SSI pages create:

. Information leaks: Providing any kind of system information to a hacker could potentially provide a hacker with the
ammunition they need to break into your server. The less a hacker knows about the configuration of a system, the harder it
isto break into.

. Accessto potentially dangerous system commands/applications. One of the most common exploits used by hackersisto
"take over" a service running on the server and use it for their own purposes. For example, gaining access to amail
application viaan HTML form-based script, and then harnessing the mail server to send out spam or acquire confidential
user information.

. Depleting system resources. While not a direct security threat per se, a poorly written CGI application can use up a system's
available resources to the point where it becomes almost completely unresponsive.

A glance at the above list shows that a high percentage of security holesisinvoked or leveraged through user input. One of the
most common problems with applications written in C and C++ are buffer overflows. When a program overflows a buffer, it
crashes. A good hacker can then take advantage of the crashed program to gain access to the system. For example, look at the
following snippet of C code:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
static char query_string[1024]

char* POST() {

int size;

si ze=at oi (get env(" CONTENT_LENGTH")) ;
fread(query_string, size, 1, stdin);
return query_string;

}

An assumption is made that user input will be a maximum of 1024 charactersin length. If the user suppliesinput of more than 1024
characters the above routine will break the program and allow someone to execute a system command remotely. The solution in

this case is to ensure that memory allocation for the variable quer y_st ri ng occurs dynamically by using acall to either the
mal | oc() orcal | oc() function.

Another common problem involves a system call that opens a subshell to process a command. In Perl such acall could be made
using any of the following functions: syst em(), exec(), piped(), open(), oreval ().Thelessonhereisto never
trust user input, and ensure al your system calls are not exploitable. Thefirst istypically achieved by establishing explicit rules
(for example, by checking input with aregular expression) for what is acceptable and what is not. The process of sanitizing system
callsislanguage-dependent. The trick isto always call external programs directly rather than going through a shell. Using Perl, this
is accomplished by passing arguments to the external program as separate elementsin alist rather than in one long string like so:

system "/usr/bin/sort", "data. dat" ‘

A related trick used by many hackersisto ater the PATH environment variable so it points to the program they want your script to
execute, instead of the program you're expecting. This exploit can be easily subverted by invoking any programs called using full
pathnames. If you haveto rely on the PATH variable, get in the habit of explicitly setting it yourself at the beginning of the
application. For example:

$ENV{' PATH }="bi n: /usr/bin:/usr/local /bin"; ‘

A denid of service (DOS) attack occurs when an attacker makes repeated calls to to one or more CGl applications. The Web server
dutifully launches a CGI process and a child server process for each call. Eventualy, if enough calls are made, the server runs out
of system resources and comes to a grinding halt. Unfortunately, there's not alot you can do to prevent a DOS attack beyond
banning the host access to the server using Apache's<Li m t ... > directive. You might aso want to look into the RLi mi t CPU
and RLi mi t MEMdirectives which limit Apache's CPU and memory usage respectively.

Later in thisarticle we'll discuss using awrapper to limit the danger inherent in running CGI applications. The next two sections of
this article detail potential risks and solutions specific to Server Side Includes and CGI applications.

Securing server side includes

Many Web administrators consider Server Side Includes (SSI) on a par with CGI applications when it comes to potential security
risks. As noted in the previous section, any program or page that uses the exec command to call a system file presents a huge
security problem if the call is made incorrectly. On the other hand, it's aremarkably simple process to disable all exec calls from an
entire Web site, or alow exec cals to be made from a specific directory only. Thisis accomplished with the Opt i ons directive.

<Di rectory>

Opti ons | ncl udesNOEXEC
Order deny, al | ow

Deny from al |
</Directory>

The Opt i ons linein the above configuration listing disables exec calls and includes for the Web site. To enable exec callsfor a
specific subdirectory of the Web, "scope-down" the directory container like so:

<Directory />

Opti ons | ncl udesNOEXEC
Order deny, al | ow

Deny from al |
</Directory>

<Directory /subdirectory>

Options Includes # (or alternately, +lncludes)
O der deny, al | ow

Deny from al |

</ Di rectory>

This configuration segment allows the execution of exec commands from only the /subdirectory directory under the site's
DocumentRoot. Note that users can still execute CGI scripts from within a document, provided the scripts are located in a directory
designated by aScri pt Al i as directive (see the next section on Securing CGI applications for details on using the

Scri pt Al i as directive).

The second consideration administrators need to be aware of concerning SSI was briefly discussed in the Introduction. It isnot a
good practice to allow SSI commands to be executed from pages with an .html or .htm file extension, especially on a high-traffic
server. Remember, all SSI pages are parsed by the server. Poorly coded pages can consume system resources at an astonishing rate,
and will eventually result in an unresponsive server. To avoid such a scenario, it is common practice to use a separate extension for
SSl-enabled documents (typically, .shtml). Thisis done by adding the following linesto Apache's configuration file:

AddHandl er server-parsed .shtnl
AddType text/htm .shtn

Thefirst directive tells Apacheto treat al files ending in .shtml as SSI pages; the second directive is sent to the browser requesting
the page, and tellsit to render the content the same as it would for an HTML request.

Securing CGI applications

Administrators have two options for configuring CGI under Apache. The first method usesthe Scri pt Al i as directiveto
designate the CGI program directory. The second method uses a combination of the Al i as and AddHand| er directives. Each
method has a place, and its own set of pros and cons.

The ScriptAlias approach

Thefirst step in securely configuring CGI under Apacheisto create a central directory to store your CGI applicationsin. This
directory should always be separate from the DocumentRoot tree. Why? Because the less the world knows about where your CGI
scripts reside, the better. It aso ensures only Web administrators can access the files that reside there. So if Mmmww/mysite/htdocsis
your DocumentRoot, /mww/mysite/cgi-bin would be a good choice for your CGI directory. Some webmasters prefer to locate their
CGil directory on another filesystem completely; for example, /var/wwwi/cgi-bin. The next step is to inform Apache which directory
contains CGI programs. Thisisdone withthe Scri pt Al i as directive.

ScriptAlias /cgi-bin/ /ww nysite/cgi-bin/

There are several points to note regarding the above directive:

. Toaccessthescript, t est. cgi , using the example path shown, auser would enter ht t p: / / www. nysi t e. cont cgi -
bi n/test. cgi intheir browser.

. Notethat both the alias and the path to the CGlI directory must end with aforward slash (/).

. Apache supports multiple Scri pt Al i as directories.

. Script Al i as designated directories are not able to be browsed (by default) for security reasons.

. Thedirectory referenced by the Scri pt Al i as directive should have very strict permission settings assigned to it. Ideally,
no one but the lead CGI developer and the system administrator should have full access (read, write, execute) on the files
contained there.

The last point above highlights one of the main advantages to enabling CGI using the Scr i pt Al i as directive. It offersthe
administrator a central point to administer CGI programs from (typically, servers configured with the Scr i pt Al i as directive
have only one CGlI directory), and allows access to the CGlI directory to be tightly controlled. The disadvantage to using

Scri pt Al i as to designate a CGl directory isthat Apache will assume any executable file it findsin the aliased directory isa
CGil application. In other words, Apache would see no distinction betweent est . cgi ,t est. pl ,andt est . bak provided they
wereall intheScri pt Al i ased directory, and all flagged as executable.

To overcome this last problem requires the use of the Al i as and AddHandl er directives.
The Alias’/AddHandler approach

The AddHandl er directiveis used to specify which files are to be considered CGI programs. But first you need to tell Apache
where your CGlI directory is, asit resides outside the document tree.

Begin by commenting out any referencesto the Scri pt Al i as directivefromht t pd. conf . Next, add the Al i as directiveto
the configuration file;

Alias /cgi-bin/ /ww nysite/cgi-bin/

Now you must tell Apache to execute CGI programs from this directory. Thisinvolves defininga<Di r ect ory. . . > container.
Thisis accomplished as follows:

<Di rectory /ww nysite/cgi-bin>
Opti ons ExecCd

AddHandl er cgi-script .cgi .pl
</Directory>

Thefirst line in the above configuration segment defines the full path to the CGI directory, the second line tells Apache that CGI
applications can be executed there, and the third line denotes any file within the CGI directory with the extension of . cgi or . pl
is considered a CGI application.

The above configuration can be expanded to provide individua users with access to their own cgi-bin directory:

Server Nanme www. conpany. com
UserDir public_htm

<Directory ~ "/home/[a-z]+/ public_htm/cgi-bin
Opti ons ExecCd

AddHandl er cgi-script .cgi .pl

</Directory>

When arequest arrives at the server for www.company.com/~tom, it will be redirected to /home/tom/public_html and the index
page for that directory sent to the client. In asimilar manner, Apache trandates any requests for www.company.com/~tom/cgi-bin/
to /home/tonypublic_html/cgi-bin/ and alows any CGI program with the proper extension (. cgi or. pl) to execute. Note that the
above Di r ect or y directive requires all usernames be lowercase. If your system allows for mixed-case or a phanumeric
usernames, a different regular expression would have to be used.

Before closing out this section and moving on to the topic of wrappers, it should be noted that athird CGI configuration optionis
available for those who like to live dangerously: an . ht access file. An. ht access file provides away for administrators to set
configuration directives on a per-directory basis. Tousean . ht access fileto enable CGI access you'd need to add the

Al l onOverri des Opti ons statement to Apache's main server configuration section, and add Opt i ons execCd tothe
user's. ht access file. What'swrong with . ht access files? One, everytime Apache encountersan . ht access fileit hasto
parse and read its contents; two, if auser gains accessto hisor her . ht access file, they could enable additional CGI options that
violate system security policies. Do not rely on . ht access filesto control CGI access.

Reducing CGlI risks with wrappers

Perfect system security isalofty but unattainable goal. Securing any system is a dynamic process -- checking for and applying
operating system updates, program fixes and patches, scanning program revisions for desirable feature additions, reviewing user
security and permissions, etc. When it comes to keeping a handle on CGl-related security issues, the very best solution isto not run
any CGl applications at all. Unfortunately, such a course of actionisrarely Ieft to the same peopl e tasked with actually securing the
system. Administrators charged with maintaining a CGl-enabled server need to strike a careful balance: Users demand dynamic
content capabilities, the potential danger inherent in CGI applications, and protecting systems that are typically exposed 24/7 to the
"big bad world of the Internet.”

Idedlly, in order to run atight ship, every CGI application exposed to the public should be thoroughly checked by the system
administrator or head devel oper for good coding practices and potentially dangerous system calls. Unfortunately, doing so often
presents atwo-fold problem: One, on abusy server, it severely strains administrative resources; and two, most system
administrators often do not have time to stay current on a half-dozen different programming languages and administer their servers.

One common solution to reducing the risks inherent in CGI applications isto employ awrapper program on the Web server. A
wrapper allows CGI applications to be run under the user 1D of the site owner -- that is, the owner of the directories and documents
that comprise aWeb site. How does this increase system security? Simple. In a non-wrapper environment, CGI scripts are executed
by the Apache user. This means the Apache user has to be amember of the same group as the site owner. It al'so means that anyone
with a Web account on the server has the ability to execute a script in any other site directory on the server. Wrappering CGI
applications restricts the damage a user can do to the user's files alone. As an added bonus, most CGI wrappers perform additional
security checks before they allow a requested application to execute.

In the following sections, two popular CGI wrappers are discussed: SUEXEC and CGIWrap.

SUEXEC

Apache comes bundled with its own security wrapper application called SUEXEC. suEXEC allows usersto run CGl and SSI
programs as the owner of the site as opposed to the owner of the httpd process. Here's how suEXEC works. When arequest is made
for aCGl or SS| file not owned by the Apache user, the request is passed to SUEXEC aong with the program name and the owner's
user/group I1D. sUEXEC then runs a series of checksto ensure the request isvalid. If itis, the script is executed. If the request fails
any of the checks, the script is not run and an error islogged.

For acomplete list of all 20 checks performed by sSUEXEC, and for detailed install ation/configuration instructions, see the Apache
SUEXEC Web site.

The most common way to use SUEXEC iswiththe User and Gr oup directiveinsideaVi r t ual Host container. For example:

<Vi rt ual Host 192. 168. 1. 5>

Docunent Root / hone/t onl public_htmn

Server Nare i nsi ghts. syroi dnmanor. com

ScriptAlias /cgi-bin/ /home/ton public_htm/cgi-bin/
User tom

G oup tom

</ Vi r t ual Host >

Note that both the User and Group must be defined before suEXEC will work. Omitting one or the other will cause any request for
aCGl application to fail, and will generate an error.

Two further notes regarding SUEXEC. First, the owner of the Web server process must be able to 'su’ to the owner/group of the
script. If Apache cannot do this, the script will fail. Second, you'll know if SUEXEC has been successfully installed and configured
by checking Apache's error log after restarting the server. Y ou should see aline similar to the following:

[Mon Aug 7 20: 39: 20 2002] [notice] SUuEXEC mechani sm enabl ed [wr apper:
/ usr/ sbi n/ suexec]

CGIWrap

CGIWrap is similar to the SUEXEC program in that it permits user accessto CGI programs without the risk of compromising server
security. It does this by running any program defined as a CGI application as the file owner rather than the Apache user. CGIWrap
also performs several security checks on the CGI application; the application will not be executed if any of the checks fail.

CGIWrap is written by Nathan Neulinger and available from the Unix Tools Web site.

CGIWrap isindependent of Apache and the operating system (SUEXEC has some performance advantages over CGIWrap asitis
compiled directly into the httpd source), and as such needs to be downloaded and compiled independently. On the plus side,
CGIWrap alowsyou to createal | ow/ deny filesthat can be used to restrict access to CGI applications. To install CGIWrap
simply download the source tarball (current version as of thiswriting is 3.7.1), extract it to adirectory of your choosing, and run
theconf i gur e script.

When the program is compiled, simply copy the CGIWrap executable to the user's cgi-bin directory. Note that this directory must
match the cgi-bin directory specified during the configuration process. Next, change the ownership and permission bits as follows:

http://httpd.apache.org/docs/suexec.html
http://httpd.apache.org/docs/suexec.html
http://cgiwrap.unixtools.org/

chown root CA Wap
chnod 4755 CGE W ap

Finally, create symbolic links from nph-cgiwrap, ntp-cgiwrapd, and cgiwrapd to CGIWrap:

In -s CAWap cgi wapd
In -s CA Wap nph-cgi wap
In -s CA Wap nph-cgi wapd

Y ou may aso haveto add an extension to the CGIWrap executable (for example, CG W ap. cgi) depending on what, if any, file
extensions you've associated with CGI applications.

Summary

This article discussed securing dynamic content on an Apache Web server. Topics included security considerations that apply to all
dynamic content in general, Server Side Includes, Apache's Common Gateway | nterface, and two ways to wrapper CGI content.
While an exhaustive discussion of securing al forms of dynamic content would be impossible within the confines of such a short
article, we hope this document has provided a basic understanding of where the most common security holeslie, and how to
address them.

As always, comments and feedback on the material presented are welcome.
Resources
For further details on securing dynamic content check out the following resources:
. The Apache Web siteis the definitive online resource for al things relating to the Apache Web server. Here you'll find
source code, pre-compiled binaries, FAQs, and developer links. There is also extensive documentation available for both

Apache 1.3 and Apache 2.0. Unlike some Open Source projects, the Apache documentation is kept relatively up-to-date
thanks in large part to the documentation coordinator Ken Coar.

. Another good online resource, especially for developers, isthe O'Reilly OnLamp.com site.

. For those who prefer paper-based resources, check out Apache Server Unleashed by Rich Bowen and Ken Coar (SAMYS).
Part 111 contains extensive material on Dynamic Content, and Part 1V is a broad overview of setting up security and
auditing. Also recommended is Laurie and Laurie's Apache: The Definitive Guide (O'Reilly & Associates). While dlightly
dated as far as Apache revisions go, most material covered remains pertinent.

. Nodiscussion of Web server security would be complete without at least a passing reference to chrooting your installation.
While beyond the scope of this article, achrooted server is one of the most complete security measures available for
Apache. For a detailed overview of the process involved, check out this online HOWTO put together by Denice Deatrich.

About the author

Tom Syroid is a contract writer for Studio B Productions, aliterary agency based in Indianapolis, IN specializing in computer-
oriented publications. Topics of interest/specialty include * NIX system security, Samba, Apache, and Web database applications
based on PHP and MySQL . He has experience administering and maintaining a diverse range of operating systems including Linux
(Red Hat, OpenLinux, Mandrake, Slackware, Gentoo), Windows (95, 98, NT, 2000, and XP), and AlX (4.3.3 and 5.1). Heisalso
the co-author of Outlook 2000 in a Nutshell (O'Reilly & Associates) and OpenLinux Secrets (Hungry Minds). Tom livesin
Saskatoon, Saskatchewan with his wife and two children. Hobbies include breaking perfectly good computer installations and then
figuring out how to fix them, gardening, reading, and building complex structures out of Lego with his kids. Questions, comments,
and errata submissions are welcome; you can either e-mail the author directly (dwcomments@syroidmanor.com.

email it!

http://httpd.apache.org/
http://httpd.apache.org/docs/
http://httpd.apache.org/docs-2.0/
http://www.onlamp.com/apache/
http://penguin.epfl.ch/chroot.html#h2-details
http://www.studiob.com/
mailto:dwcomments@syroidmanor.com
javascript:void newWindow()

What do you think of thisarticle?
OKiller! (5) O Good stuff (4) O So-so; not bad (3) O Needswork (2) O Lame! (1)

Comments?

| submitfeedback |

IBM developerWorks: Security : Security articles developerWorks
About IBM | Privacy | Lega | Contact

http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/security/
http://www-105.ibm.com/developerworks/papers.nsf/dw/security-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks: Security : Web server security

	FIDEHOMJNCOGKIPFNBOHGJEDMBCLOFIO:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Web server security
	f2: Security
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

