
Web
Application

 Security

TISC 2000

Eran Reshef, Founder
and

Izhar Bar-Gad, Director of Technology
Perfecto Technologies

Abstract

Providing Web Application Security for an organization that engages in electronic
business is a huge and complex task. Every entry point in the e-Business system must be
secured, at both the network and application levels. Whereas most network security
issues, including access control, data transmission security, and authentication can be
addressed using commercially available products, application security has received less
attention. Consequently, the application has remained the most vulnerable component in
the security chain. Today, almost every e-Business web site can be broken into at the
application level in a matter of hours. Hacking techniques such as hidden field
manipulation, parameter tampering, and cookie poisoning can be easily deployed,
resulting in stolen customer data, denial of services, and the complete shut-down of the
site. The vulnerabilities that permit these exploitations exist as a result of flaws in the
design, implementation, and testing of internally developed code, as well as bugs andthe
misconfigurations of third-party products. Attempting to “plug”plug allof these holes
requires a full-time security team to monitor and patch the application.

In this paper, we describe a new security technology, Web Application Shielding, a run-
time application-level security proxy that automatically recognizes the application
security policy for each page by constantly analyzing the outgoing traffic from the web
application to its clients. The proxy then automatically enforces this policy on returning
requests, preventing hackers from exploiting application vulnerabilities and removing the
need to track and patch every hole in the application. This not only provides a higher
level of security, but also reduces security resource requirements within the organization.

Table of contents

Abstract ... 2

Table of contents... 3

Web Application Security - The Missing Piece.. 4

Application Hacking Techniques.. 5

Manual Application Security .. 6

Why Manual Application Security Fails... 7

Web Application Shielding (WAS) .. 8

More Information.. 1110

Web Application Security - The Missing Piece

Audits performed on 37 major web sites revealed that 36 of them had major problems at
the application level that could be exploited in a matter of hours. While heavily secured at
the network level, these sites still allowed hackers--via web application vulnerabilities, --
tohackers to execute Unix shell commands, download source code and even submit SQL
queries via web queries.application vulnerabilities. Why? Because virtually all sites today
attempt to achieve application-level security manually. This is a complex task, whose
final goal is to ensure that web applications interact with end users only in ways that were
intended by the developers. Manual security measures include fortification of the
application and its environment and recurring tests of the application and all third party
applications. On the way to this ambitious goal, all web site managers struggle with the
same issues:

1. Flaws with the design, implementation and testing of internally developed code,
such as those found in Microsoft's Hotmail and other sites.

2. Vulnerabilities found in vendor products used to provide application
infrastructure, such as web servers and application servers. More than 20
vulnerabilities were found in Microsoft's web server in 1999 andalone. These are
documented in Securityfocus.com.

3. Misconfiguration of underlying infrastructure, such as enabling of server-side-
includes in web servers, or even allowing directory browsing (Click here to see
Apache's security tips for server configuration).

5.4. Flaws with code obtained from external sources or with code that is being
outsourced, such as shopping cart CGIs that store price information within hidden
fields. (Click here to search AltaVista for examples.)

5. Backdoors and debug options left open on purpose within the application. For
example, Matt's formmail.cgi, a generic WWW form to an e-mail gateway,also
can be used to pilfer the environment variables by using a debug flag
("env_report") and changing the recipient parameter.

 The results of the audits are shown in the following graph, divided according to the
outcome of the audit process:

Perfecto's Application Audit Results

Delete All
3%

E-shoplifting
33%

Execute
Transactions

5%
Full Access

22%Full Control
5%

Minor
3%

Modify Information
5%

Privacy Breach
24%

Delete All

E-shoplifting

Execute Transactions

Full Access

Full Control

Minor

Modify Information

Privacy Breach

Application Hacking Techniques

While it is very hard for web sites to secure their applications, application hacking is
quite simple. All the hacker has to do is spendA hacker typically spends a few hours
understanding the web application, thinking like a programmer and identifying the
shortcuts he would have created ifhe had he built this web application. After doing so, the
hackersimply uses a web browser and attempts to interact with the application and its
surrounding infrastructure in malicious ways.

To better understand how easy web application hacking is, let’s look at three simple
techniques:

Hidden Manipulation
Hidden fields are often used to save information about the client's session, eliminating the
need to maintain a complex database on the server side. A client does not normally see the
hidden field and does not attempt to change it. However, modifying form fields is very
simple. For example, let's assume the price of a product is kept in a hidden field, a
common practice allowing for e-shoplifting, and thus is trusted by any back-end system. A
hacker caneasily change it,the price, and the invoked CGI will charge him/her for the new
amount, as follows:

1. Open the html page within an HTML editor.
2. Locate the hidden field (e.g., "<type=hidden name=price

value=99.95>")
3. Modify its content to a different value (e.g. "<type=hidden name=price

value=1.00>")
4. Save the html file locally and browse it.
5. Click the "buy" button to perform electronic shoplifting via hidden manipulation.

Parameter Tampering
Failure to confirm the correctness of CGI parameters embedded inside a hyperlink can be
easily used to break the site security. For example, let's take a search CGI that accepts a
template parameter:

Search.exe?template=result.html&q=security

By replacing the template parameter, a hacker can obtain access to any file he wants,
such as /etc/passwd or the site's private key, e.g.:

Search.exe?template=/etc/passwd&q=security

Cookie Poisoning
Many web applications use cookies in order to save information (user id, time stamp,
etc.) on the client's machine. For example, when a user logs into many sites, a login CGI
validates his user name and password and sets a cookie with his numerical identifier.
When the user checks his preferences later, another CGI (say, preferences.asp)
retrieves the cookie and displays the user information records of the corresponding user.
Since cookies are not always cryptographically secure, a hacker can modify them by
modifying the cookie file, thus fooling the application.
causing the return of information belonging to another user and enabling the performance
of activity on behalf of that user.

Manual Application Security

To manually subvert these attacks, as well as others, a web site development team needs
to go through a cyclic process that spans the entire organization and exacts a toll in each
phase of web site management.

Secure code design
Designing application functionality with security in mind leads to a more complex
application and extends development time. In addition, designing a secured application
requires specific expertise. expertise that may not be available within the organization. In
addition, any major change in the site will force re-examination of the design.

Secure code implementation
A more complex design also complicates implementation. Implementing a secured
application requires the use of defensive coding, i.e., embedding checks and balances, to
make sure an implementation error will not cause a security hazard. A more complex
design also complicates implementation demanding more time for coding and testing.
Sparing time for such tasks is usually a luxury that is unavailable in the rapidly changing
world of web development. Some application servers can provide limited assistance in
this area although non of them can supply a complete solution.

Testing for Loopholes
Other than functionality testing, an entirely new category of stress testing needs tomust
be implemented. The application should be placed in hostile environments and attacked
with various tests and inputs designed to expose its loopholes.
This security testing process demands expertise, which do not necessarily exist within the
development or quality assurance groups of the organization causing a need for expensive
outsourcing.

Secure Configuration
Careful attention to detail is crucial in this stage, as the configuration of each component
should be checked and verified to disallow any exploit. This includes web servers,
application servers, public-domain CGIs and, of course, internally developed code. For
example, the site administrators should configure vendor software to turn off any unsafe
features, set correct permissions on every file that is accessible by the web servers,
remove debug andQA features and options left for the quality assurance process from
production environment and remove default examples. When using hardened web
servers, secure configuration is easier to achieve than with normal web servers.

Constant Patching
Every time a vendor or a public-domain CGI developer announces a fix for a
vulnerability found, the patch should promptly be applied to the entire site. It is very hard
to keep pace with the rate of the fixes, especially for large, complex sites.

Education
Educating developers, testers, site administrators and external consultants to understand
and master application security is a daunting task. You will always have some novice
people who are bound to make mistakes.

Code Reviews

If you happen to use a public-domain code in your application, then a code reviewPublic-
domain software is widely spread in the web environment, this software usually contains
security holes that are easily examined by hackers. A code review is normally needed to
ensure its security properties. This code review is a very time intensive process that must
be on going to deal with the constant advances in the properties is needed. If you are
really into security, thensoftware. Moreover, code reviews might be needed for the
software developed in the organization to find backdoors left by your own programmers
will be a real issue for you.the application programmers.. The only way to remove these
in-house backdoors is to have a third-party advisor review all your code.
code, a costly and time consuming process.

Why Manual Application Security Fails

Unfortunately, all manual application fortification fails in the long run. This is due to the
complexity of the product and the fact that it is constantly changing.

Life cycle of a typical web based application

Since there are multiple steps, an error leading to a security holevulnerability might
happenoccur in any of the stages and still harmaffect the whole sequence. It is enough
that aA single design stagewas performed in an insecure way is enough to cause the
application to be insecure even with the best implementation. Furthermore, since the
sequence of stages occur in “Internet time,” new security holes are likely to pop up quite
often. Even assuming that at each stage there is a mere 1% chance of a mistake then after
repeating the multiplemistake, after iterating through these stages several times the
chances are multiplied and a security hole is bound to happenForvulnerability becomes
highly probable. For example, a system administrator might remember to add all the to
his web servers. However, when he adds a new web server a year later he is unlikely
tomay not remember to add the old patches (e.g., the hack into MailStart site). This
continuous cycle of trying to keep up with all the patches led to the following comment
from Yahoo after their site was hacked: “It would be naïve to promise that there'll be no
bugs in the future".future1”.

Web Application Shielding (WAS)

1 http://news.cnet.com/news/0-1007-200-340937.html

Instead of trying to patch all the holes – an impossible task – theres is a way to secure the
application by simply refusingapplication:simply refuse to allow hackers to exploit the
vulnerabilities. Web Application Security (WAS) automatically secures web applications
on the fly. As HTML pages are requested from a web server to a browser, WAS
automatically generates a security policy tailored for the web application. The WAS
process automatically extracts all of the acceptable responses defined in the HTML page,
and enforces HTTP requestswhen they return from the web browser to the server to
conform to the automatically generated security policy.policy when they return from the
web browser to the server. WAS resides between the internet and the application
(usuallyInternet and the application, usually behind firewalls and load
balancers)balancers and in front of the webs servers, where it functions like a proxy for
bi-directional information flow of requests and responses.

WAS within the organization network.

When a user starts an application session by directing his browser to an e-business site,
WAS first verifies that the page accessed is indeed a legal entry URL to the site. For
example, the site administrator may declare the home page to be a legal entry URL as
well as any page under the “products” section. After the initial check is performed, WAS
creates an application session token and stores it inside a cookie that is cryptographically
protected by WAS. This cookie is used in all future transactions to uniquely identify
users.

Once a session is established, WAS analyzes each HTML page that belongs to that
session as it is being forwarded to the browser. The Policy Recognition Engine analyzes
the page, looking for information such as CGI parameters, hidden field values, drop-
down menu values, and maximum size of expected text fields. Based upon this run-time
analysis, WAS automatically determines the security policy of the application. Additional
legal requests cause WAS to adjust the security policy for the session.

WAS’s Policy Recognition Engine automatically identifies the security
policy of each HTML page.

Enforcing the dynamic policy for every user is done using Adaptive Reduction
Technology(ART). Adaptive Reduction Technology (ART) functions much the same way
water is purified through distillation. The contaminated water is placed in one tank and is
boiled. The steam is then transferred to a second tank in which it is turned back into
water. In the process, all impurities are removed from the water, leaving it fresh and
pure. Similarly, ART uses a reducer to translate any request sent from the browser into a
simple and secured language. This secured language representation is then used to
rebuild a request by an expander. Reducing the request to its simplest form and then
expanding it prevents any illegal information from being passed to the application. This
language is context dependent and is dynamically adapted to the current state of the
application, based on the security policy set by the Policy Recognition Engine.

To make this point, let’s imagine there’s an application that sells four items: a desk, a
chair, a pen, and a pencil. The application generates a page that contains four links to the
four items. On its way from the web server to the browser, the page is captured by the
policy recognition engine and analyzed. The Policy Recognition Engine recognizes the
four links and generates a simple and secured language to represent the four potential
links inside WAS. The simple and secured language in this example is a two-bit code (00
for a desk, 01 for a chair, 10 for a pen and 11 for a pencil). When the user clicks the desk

link, a URL is sent back to the site. The URL is captured by the reducer, which in turn
translates the URL to 00 and sends this information to the expander. The expander then
translates 00 back to the desk URL and forwards the request to the web server.

Example of Adaptive Reduction Technology in action

In case of a hacking attempt, the reduction phase of ART will fail. Instead of relaying the
illegal request, WAS invokes a customizable error CGI with information about the origin
of the attack and its type. In response, that CGI generates an error page that is sent to the
hacker. WAS also invokes a Timeout CGI in case a request is sent after a session is
timed-out.

Conclusion

WAS not only provides application security, it also improves the process in the e-
Business application cycle. Errors created throughout the development, testing and
deployment stages will not cause security breaches within the web site. Nor would any
security holes in 3rd party or public domain applications. This change in the security
environment enables the organization development process to shift away from security
and to its true focus: adding greater functionality to the web site. The result is a more
secure web site built more quickly and offering a better overall customer experience.

More Information

1. Perfecto Technologies, the WebApplication Security company.
2. The World Wide Web Security FAQ by Lincoln D. Stein

Browser Web
Server

Policy Recognition
Engine

Reducer Expander

Item 1 = 00 Item 3 = 10
Item 2 = 01 Item 4 = 11

3. NT Web Technology Vulnerabilities from Phrack Magazine
4. Perl CGI problems from Phrack Magazine
5. Writing secure CGI scripts for WWW servers
6. The Unofficial Web Hack FAQ by Simple Nomad

