
CONTENTS

I. A Survey of Two Signature
Aggregation Techniques

II. On the Cost of Factoring
RSA-1024

III. Physical One-Way Functions

RSA Laboratories
Volume 6, No. 2, Summer 2003

I. A Survey of Two Signature Aggregation Techniques
Dan Boneh, Craig Gentry, Ben Lynn and Hovav Shacham

A B S T R A C T

We survey two recent signature constructions that support signature aggregation: Given n signa-
tures on n distinct messages from n distinct users, it is possible to aggregate all these signatures into
a single signature. Aggregate signatures are useful for reducing the size of certificate chains (by
aggregating all signatures in the chain) and for reducing message size in secure routing protocols
such as SBGP.

II. On the Cost of Factoring RSA-1024
Adi Shamir and Eran Tromer

A B S T R A C T

Recent work on factorization has placed the bottleneck at the sieving step of the Number Field
Sieve algorithm. We present a new implementation of this step, based on a proposed custom-built
hardware device that achieves a very high level of parallelism “for free” by use of algorithms that
take advantage of certain trade-offs in chip manufacturing technology. Using this hypothetical
device (and ignoring the initial R&D costs), it appears possible to break a 1024-bit RSA key in one
year using a device whose cost is about $10M.

III. Physical One-Way Functions
Ravikanth S. Pappu

A B S T R A C T

Physical One-Way Functions (POWFs) provide a novel approach to assigning unique, tamper-
resistant and unforgeable identifiers to everyday objects. POWFs can be obtained from the inher-
ent three-dimensional microstructure of a large class of physical systems known as mesoscopic sys-
tems, which are inexpensive to fabricate and prohibitively difficult to duplicate. In this paper, we
describe implementations of, attacks on and applications of POWFs.

CryptoBytes

EDITOR’S NOTE: For RSA Laboratories' comments on the TWIRL design and our
current recommendations on RSA key size, please see

http://www.rsasecurity.com/rsalabs/technotes/twirl.html

I . A Survey of Two Signature Aggregation Techniques

Dan Boneh
dabo@cs.stanford.edu

Craig Gentry
cgentry@docomolabs-usa.com

Ben Lynn
blynn@cs.stanford.edu

Hovav Shacham
hovav@cs.stanford.edu

Abstract

We survey two recent signature constructions that sup-
port signature aggregation: Given n signatures on n
distinct messages from n distinct users, it is possible to
aggregate all these signatures into a single signature.
This single signature (and all n original messages) will
convince any verifier that the n users signed the n orig-
inal messages (i.e., for i = 1, . . . ,n user i signed mes-
sage number i). We survey two constructions. The
first is based on the short signature scheme of Boneh,
Lynn, and Shacham and supports general aggrega-
tion. The second, based on a multisignature scheme
of Micali, Ohta, and Reyzin, is built from any trap-
door permutation but only supports sequential aggre-
gation. Aggregate signatures are useful for reducing
the size of certificate chains (by aggregating all sig-
natures in the chain) and for reducing message size in
secure routing protocols such as SBGP.

1 Introduction

Security systems often manage signatures on many
different messages generated by many different users.
For example, in a Public Key Infrastructure (PKI)
of depth n, user signatures are accompanied by a
chain of n certificates. The chain contains n sig-
natures by n Certificate Authorities (CAs) on n dis-

tinct certificates. Similarly, in the Secure BGP proto-
col (SBGP) [16] each router receives a list of n sig-
natures attesting to a certain path of length n in the
network. A router signs its own segment in the path
and forwards the resulting list of n + 1 signatures to
the next router. As a result, the number of signatures
in routing messages is linear in the length of the path.
Both systems would benefit from a method for com-
pressing the list of signatures on distinct messages
issued by distinct parties. For example, certificate
chains could be shortened by compressing the n signa-
tures in the chain into a single signature. Note that one
would still need to store the data in all certificates in
the chain — only the signatures in the chain are com-
pressed.

An aggregate signature scheme enables us to
achieve precisely this type of compression. In this pa-
per we survey two mechanisms for signature aggrega-
tion: general aggregation and sequential aggregation.
We assume each of n users has a public-private key
pair (PKi,SKi). User i wishes to sign message Mi.

General aggregate signatures. In a general signa-
ture aggregation scheme each user i signs her mes-
sage Mi to obtain a signature σi. Then anyone can
use a public aggregation algorithm to take all n signa-
tures σ1, . . . ,σn and compress them into a single sig-
nature σ. Moreover, the aggregation can be performed
incrementally — signatures σ1,σ2 can be aggregated

1

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

into σ12 which can then be further aggregated with
σ3 to obtainσ123, and so on. There is also an ag-
gregate verification algorithm that takesPK1, . . . ,PKn,
M1, . . . ,Mn, andσ and decides whether the aggregate
signature is valid. Thus, an aggregate signature pro-
vides non-repudiation at once on many different mes-
sages by many users. We refer to this mechanism as
general aggregation since aggregation can be done by
anyone and without the cooperation of the signers.
In the next section we describe a general aggregate
signature scheme due to Boneh, Gentry, Lynn, and
Shacham [5]. The scheme uses bilinear maps from
algebraic geometry.

Sequential aggregate signatures. In a sequential
aggregation scheme, signature aggregation can only
be done during the signing process. Each signer in
turn sequentially adds her signature to the current ag-
gregate. Thus, there is an explicit order imposed on
the aggregate signature and the signers must commu-
nicate with each other during the aggregation process.
Operationally, sequential aggregation works as fol-
lows: User 1 signsM1 to obtainσ1; user 2 then com-
binesσ1 andM2 to obtainσ2; and so on. Thefinal
signatureσn binds useri to Mi for all i = 1, . . . ,n. In
Section 3 we describe a sequential aggregate signature
scheme based on homomorphic trapdoor permutations
such as RSA. The scheme is based on a multisignature
scheme due to Micali, Ohta, and Reyzin [19] and ana-
lyzed in [27].

Although general aggregation is more powerful
than sequential aggregation, the fact that sequential
aggregation can be built from standard primitives such
as RSA has its benefits. Interestingly, either mecha-
nism can be used for compressing signatures in a cer-
tificate chain.

Aggregate signatures are related to multisigna-
tures [24, 23, 20, 3]. In multisignatures, a set of users
all sign thesame message and the result is a single
signature. Recently, Micali, Ohta, and Reyzin [20],

presented a clear security model and new construc-
tions for multisignatures. Another efficient construc-
tion was presented by Boldyreva [3]. Multisignatures
are insufficient for the applications we have in mind,
such as certificate chains and SBGP. For these appli-
cations we must be able to combine signatures on dis-
tinct messages into an aggregate.

The application of aggregate signatures to com-
pressing certificate chains is related to an open prob-
lem posed by Micali and Rivest [21]: Given a certifi-
cate chain and some special additional signatures, can
intermediate links in the chain be cut out? Aggregate
signatures allow the compression of certificate chains
without any additional signatures, but a verifier must
still be aware of all intermediate links in the chain.

2 General Aggregate Signatures

In a general aggregate signature scheme, signatures
are generated by individual users. They can then be
combined into an aggregate signature by some aggre-
gating party. The aggregating party need not be one
of the users, and need not be trusted by them. Every
aggregate signature scheme is a generalization of an
ordinary signature scheme. An aggregate signature is
the same length as an ordinary signature in the under-
lying scheme.

The aggregation algorithm takes as input signa-
tures σ1, . . . ,σn on respective messagesM1, . . . ,Mn

under respective public keysPK1, . . . ,PKn. (The as-
signment of indices is arbitrary.) It outputs a single
aggregate signatureσ.

The aggregate verification algorithm, given an ag-
gregate signatureσ, messagesM1, . . . ,Mn, and public
keysPK1, . . . ,PKn, verifies thatσ is a valid aggregate
signature on the given messages under the given keys.

2

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

2.1 Bilinear Maps

We start by reviewing the mathematical underpinnings
of general aggregate signatures: Gap Diffie-Hellman
groups and bilinear groups. Gap Diffie-Hellman
groups arise from a separation between Computa-
tional and Decision Diffie-Hellman. Bilinear groups
arise from the presence of a bilinear map, a function
with certain properties.

Consider a multiplicative cyclic groupG of prime
orderp, with generatorg. On this group, the familiar
Diffie-Hellman problems proceed as follows.

Computational Diffie-Hellman (CDH). Given
g,ga,h ∈ G, computeha ∈ G.

Decision Diffie-Hellman (DDH). Giveng,ga,h,hb ∈
G, decide whethera equals b. Tuples of
this form— (g,ga,h,ha) — are termed Diffie-
Hellman tuples.

Loosely stated, the CDH assumption is that it is com-
putationally infeasible to solve random instances of
the CDH problem; the DDH assumption is similarly
defined.

GDH Groups. For many choices of groupG, such
as subgroups ofZ∗q, both the CDH and DDH assump-
tions are believed to hold. As we will see, however,
on certain elliptic-curve groups, the DDH problem is
easy to solve, whereas CDH is believed hard [6, 22].
We term groups that have this property Gap Diffie-
Hellman (GDH) groups. GDH is an instance of a
family of gap problems discussed by Okamoto and
Pointcheval [25].

Bilinear groups. Currently, the only known exam-
ples of GDH groups have additional structure, namely,
a bilinear map. A bilinear map is a mape : G×G→

GT — whereGT is another multiplicative cyclic group
of prime orderp — with the following properties:

• Computable: there exists an efficiently-
computable algorithm for computinge(u,v), for
all u,v ∈ G.

• Bilinear: for allu,v ∈G anda,b ∈ Z, e(ua,vb) =
e(u,v)ab.

• Non-degenerate:e(g,g) �= 1.

A bilinear group is any group that possesses such a
mape, and on which CDH is hard.

Joux and Nguyen [15] noted that a bilinear mape
provides an algorithm for solving DDH. For a tuple
(g,ga,h,hb) we have

a = b mod p ⇐⇒ e(h,ga) = e(hb,g) .

Consequently, if a groupG is a bilinear group then
G is also a GDH group. (The converse is probably not
true.)

We now describe the elliptic curve groups men-
tioned above. LetE/Fq be an elliptic curve, and let
G be a subgroup (of prime orderp) of the curve’s
group of pointsE(Fq). On certain curves, the Weil
and modified Tate pairings [14, 12, 13] yield a bilin-
ear mape : G×G→ GT . The target groupGT is a
subgroup ofFqα , whereα is a security multiplier that
depends on the curve and on the groupG.

The multiplier α provides a tradeoff between ef-
ficiency and security. The smaller the value ofα,
the faster is the computation of the bilinear map; the
larger the value ofα, the more difficult is the CDH
problem onG. Current CDH algorithms onG re-
quire solving the discrete logarithm problem either in
the generic groupG (of order p) or in thefinite field
Fqα [17, 18]. We note that members of the MNT fam-
ily of curves [22] have large subgroups with security
multiplier α = 6, which is suitable for our needs.

3

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

2.2 The BLS Signature Scheme

We now describe the BLS short signature scheme. The
scheme works in any Gap Diffie-Hellman groupG. It
requires, in addition, a hash function from the mes-
sage space onto the groupG. The scheme is related to
the undeniable signature scheme of Chaum and Ped-
ersen [7].

Specifically, let G = 〈g〉 be a GDH group of prime
orderp, with a hash functionH : {0,1}∗ →G, viewed
as a random oracle [2]. Any string can be signed; a
signature is a single element ofG. The scheme com-
prises the three algorithms below.

Key Generation. Pick randomx
R← Zp and compute

v← gx. The public key isv ∈ G. The private key
is x ∈ Zp.

Signing. Given a private keyx and a messageM ∈
{0,1}∗, computeh← H(M), whereh ∈ G, and
σ← hx. The signature isσ ∈ G.

Verification. Given a public keyv, a messageM, and
a signatureσ, computeh←H(M) and verify that
(g,v,h,σ) is a valid Diffie-Hellman tuple.

The intuition is: On a correct signature,v = gx, and
σ = hx, so (g,v,h,σ) is a Diffie-Hellman tuple. This
establishes the validity of the scheme. Its security
against existential forgery under a chosen message at-
tack can be shown based on the CDH assumption in
G [6].

Signature length. Points on an elliptic curve group
G < E(Fq) are usually represented as a pair(x,y) of
elements ofFq, but BLS remains valid and secure even
if only thex-coordinate of every signature pointσ∈G
is transmitted. Thus, on an MNT curve (withα = 6)
over a 170-bitfield, BLS signatures are 170 bits long,
and provide security comparable to that of 1024-bit

RSA [26, 4] or 320-bit DSA [11]. In other words, BLS
signatures are half the size of DSA with comparable
security.

Because of their simple mathematical structure,
BLS signatures are amenable to a variety of exten-
sions, including threshold signatures, multisignatures,
and blind signatures [3].

2.3 Bilinear Aggregate Signatures

We now describe the bilinear aggregate signature
scheme [5]. Unlike the BLS signature scheme on
which it is based, the bilinear aggregate signature
scheme requires the groupG to be a bilinear group—
a general Gap Diffie-Hellman group is insufficient. As
in the BLS scheme, any string can be signed. The
scheme employs a random oracle hash function, but
one that takes both a string and an element ofG as
input: H : G×{0,1}∗ → G.

The bilinear aggregate signature scheme enables
general aggregation. An arbitrary aggregating party
unrelated to, and untrusted by, the original signers
can combine pre-existing signatures into an aggregate.
The system does not impose an order on the aggre-
gated elements. Note that, when needed, an order can
be imposed by prepending index numbers to the mes-
sages being signed.

For notational convenience, we number the users
whose signatures are aggregated 1,2, . . . ,n in the de-
scription below. This numbering is arbitrary. The
number of signaturesn in an aggregate is effectively
unbounded (viz., polynomial in the security parame-
ter).

The scheme includes the three usual algorithms for
generating and verifying individual signatures, as well
as two additional algorithms that provide the aggrega-
tion capability.

4

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

Key Generation. For a particular user, pick random

x
R← Zp, and computev← gx. The user’s public

key isv ∈ G. The user’s private key isx ∈ Zp.

Signing. For a particular user, given the public keyv,
the private keyx, and a messageM ∈ {0,1}∗,
computeh←H(v,M), whereh ∈G, andσ← hx.
The signature isσ ∈ G.

Verification. Given a user’s public key v, a mes-
sageM, and a signatureσ, computeh←H(v,M);
accept ife(σ,g) = e(h,v) holds.

Aggregation. Arbitrarily assign to each user whose
signature will be aggregated an indexi, rang-
ing from 1 to n. Each useri provides a signa-
ture σi ∈ G on a messageMi ∈ {0,1}∗ of her
choice. Computeσ← ∏n

i=1σi. The aggregate
signature isσ ∈ G.

Aggregate Verification. We are given an aggregate
signatureσ ∈ G for a set of users, indexed as be-
fore, and are given the original messagesMi ∈
{0,1}∗ and public keysvi ∈ G. To verify the ag-
gregate signatureσ, computehi← H(vi,Mi) for
1≤ i ≤ n, and accept ife(σ,g) = ∏n

i=1 e(hi,vi)
holds.

The test employed in the verification of individual sig-
natures is the same DDH test used in BLS verification,
but rewritten in bilinear-map notation. Note that a bi-
linear aggregate signature, like a BLS signature, is a
single element ofG. Unlike in BLS, the signing pro-
cess signs both the message and the user’s public key.

The intuition behind bilinear aggregate signatures
is as follows. Useri has a private keyxi ∈ Zp and
a public keyvi = gxi . Useri’s signature, if correctly
formed, isσi = hxi

i , wherehi is the hash of the user’s
chosen message,Mi, along with her public keyvi. The
aggregate signatureσ is thusσ = ∏i σi = ∏i hxi

i . Using
the properties of the bilinear map, the left-hand side of
the verification equation expands:

e(σ,g) = e(∏i hxi
i ,g)

= ∏i e(hi,g)xi

= ∏i e(hi,g
xi)

= ∏i e(hi,vi) ,

which is the right-hand side, as required. This estab-
lishes the validity of the scheme; its security against
forgery can be demonstrated. Even when the would-
be forger possesses all but one of the private keys, he
cannot frame the remaining honest user. See [5] for
the exact security model and proof of security based
on CDH inG.

Incremental Aggregation. Consider an aggregate
signatureσ on messagesM1, . . . ,Mn under public
keys v1, . . . ,vn. An additional signatureσn+1 (on a
messageMn+1 under public keyvn+1) can be folded
into the aggregate:σ′ ← σ ·σn+1. If some signature
σ j included inσ is known, it can be removed from
the aggregate:σ′ ← σ/σ j. If, however, only the mes-
sages, public keys, and the aggregate signatureσ are
known, recovering the individual signaturesσ1, . . . ,σn

from the aggregate is hard. This hardness assump-
tion, the basis for other signature constructions [5],
was shown by Coron and Naccache to be equivalent
to Computational Diffie-Hellman [10].

3 Sequential Aggregate Signatures

Sequential aggregate signatures are a variant of aggre-
gate signatures. In a sequential aggregate signature
scheme, signatures are not individually generated and
then combined into an aggregate. Rather, a would-be
signer transforms a sequential aggregate into another
that includes a signature on a message of his choice.
Signing and aggregation are a single operation. Se-
quential aggregate signatures are built in layers, like
an onion; thefirst signature in the aggregate is the in-
most. As with general aggregate signatures, the re-
sulting sequential aggregate is the same length as an

5

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

ordinary signature. This behavior closely mirrors the
sequential nature of certificate chains in a PKI.

For sequential aggregate signatures, aggregation
and signing are performed in a single combined op-
eration. The operation takes as input a private keySK,
a messageMi to sign, and a sequential aggregate sig-
natureσ′ on messagesM1, . . . ,Mi−1 under respective
public keysPK1, . . . ,PKi−1, whereM1 is the inmost
message. It adds a signature onMi underSK to the
aggregate, outputting a sequential aggregateσ on all i
messagesM1, . . . ,Mi.

The aggregate verification algorithm, given a se-
quential aggregate signatureσ, messagesM1, . . . ,Mi,
and public keysPK1, . . . ,PKi, verifies thatσ is a valid
sequential aggregate (withM1 inmost) on the given
messages under the given keys.

3.1 Trapdoor Homomorphic Permutations

Sequential aggregate signatures are built from trap-
door homomorphic permutations. Wefirst review
trapdoor permutations and then describe the sequen-
tial aggregate scheme to which they give rise.

A permutation familyΠ is a collection of permuta-
tions of some domainD. Each permutation inΠ has
a descriptions ∈ S. Anyone given a descriptions can
evaluate the corresponding permutation.

Loosely speaking, a permutation family is one-way
if, given a permutation descriptions, it is infeasible
to invert the corresponding permutation. A permuta-
tion family is trapdoor if each descriptions has some
corresponding trapdoort ∈ T such that it is easy to
invert the permutation corresponding tos with t, but
infeasible withoutt. A trapdoor permutation family is
necessarily one-way. (HereS andT are arbitrary sets.)

More formally, a trapdoor permutation familyΠ
comprises three algorithms:Generate, Evaluate,

and Invert. The randomized generation algo-
rithm Generate outputs the descriptions ∈ S of a per-
mutation along with the corresponding trapdoort ∈ T .
The evaluation algorithmEvaluate, given the permu-
tation descriptions and a valuex ∈ D, outputsa ∈ D,
the image ofx under the permutation. The inversion
algorithmInvert, given the permutation descriptions,
the trapdoort, and a valuea∈D, outputs the preimage
of a under the permutation.

We require that Evaluate(s, ·) be a permuta-

tion of D for all (s, t) R← Generate, and that

Invert(s, t,Evaluate(s,x)) = x hold for all (s, t) R←
Generate and for allx ∈ D.

A trapdoor permutation is homomorphic ifD is a
group with some operation∗ and if, for all(s, t) gener-
ated byGenerate, the permutationπ: D→ D induced
by Evaluate(s, ·) is an automorphism onD. That is, if
a = π(x) andb = π(y), thena∗b = π(x∗ y).

When it engenders no ambiguity, we consider the
output of the generation algorithmGenerate as a
probability distributionΠ on permutations, and write

(π,π−1) R←Π; hereπis the permutationEvaluate(s, ·),
andπ−1 is the inverse permutationInvert(s, t, ·).

It can happen that each permutationEvaluate(s, ·)
is over a different domainDs. For example, the RSA
permutation family gives permutations over domains
Z
∗
N , where each user has a distinct modulusN. We

consider this further in Section 3.4. For now we as-
sume that all permutations in the family are over the
same domainD.

3.2 Full-domain signatures

We review the full-domain hash signature scheme.
The scheme, introduced by Bellare and Rogaway [1]
and further analyzed by Coron [8], works in any trap-
door permutation family.

6

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

Like the others discussed above, the full-domain
hash signature scheme employs a random-oracle hash
function H : {0,1}∗ → D. The hash function maps
bit strings into the entire domainD (rather than some
subset ofD), a fact which gives the scheme its name.

Key Generation. For a particular user, pick random

(s, t) R← Generate. The user’s public keyPK is s.
The user’s private keySK is (s, t).

Signing. For a particular user, given the private
key (s, t) and a messageM ∈ {0,1}∗, compute
h← H(M), whereh ∈ D, andσ← Invert(s, t,h).
The signature isσ ∈ D.

Verification. Given a user’s public key s, a mes-
sageM, and a signatureσ, computeh← H(M);
accept ifh = Evaluate(s,σ) holds.

These algorithms can also be described using the sim-
plified notation given above. A user signs a message
by publishingσ = π−1(H(M)); the signature is valid
if π(σ) = H(M) holds.

The signature scheme is secure against existential
forgery under a chosen message attack ifΠ is a trap-
door permutation family [1]. IfΠ is homomorphic as
well, then the security reduction can be made more
efficient [8].

3.3 Sequential Aggregate Signatures

We now describe the trapdoor sequential aggregate
signature scheme. The scheme is related to the full-
domain hash signature scheme, but must be instanti-
ated on ahomomorphic trapdoor permutation. The
scheme is based on a multisignature scheme due to
Micali, Ohta, and Reyzin [19].

To simplify the presentation of the scheme, we
introduce some notation for vectors. We write a

vector asx, its length as|x|, and its elements as
x1,x2, . . . ,x|x|. We denote vector concatenation asx‖y
and appending an element to a vector asx‖z. For
a vectorx, x|ba is the sub-vector containing elements
xa,xa+1, . . . ,xb. It is necessarily the case that 1≤ a≤
b≤ |x|.

Like the others, this scheme employs a full-
domain random-oracle hash functionH mapping in-
puts into D. A signer provides toH every pub-
lic key and every message in the aggregate signa-
ture she is creating. ThusH is of the form H :⋃∞

j=1

[
(S) j× ({0,1}∗) j

]→ D.

Key Generation. For a particular user, pick random

(s, t) R← Generate. The user’s public keyPK is s.
The user’s private keySK is (s, t).

Aggregate Signing. The input is a private key(s, t), a
messageM ∈ {0,1}∗ to be signed, and a sequen-
tial aggregate signatureσ′ on a vector of mes-
sagesM under a vector of public keyss. No key
may appear twice ins. Furthermore, the vec-
tors M and s must have the same length. Let
i equal|M|. If i is 0, σ′ must equal 1, the unit
of D.
Computeh← H(s‖s,M‖M), whereh ∈ D, and
σ← Invert(s, t,h∗σ′). The sequential aggregate
signature isσ ∈ D.

Aggregate Verification. The input is a sequential
aggregate signatureσ on messagesM under
public keys s, where |M| = |s| = i. To ver-
ify, set σi ← σ. Then, for j = i, . . . ,1, set
σ j−1 ← Evaluate(s j,σ j) ∗H(s| j1 , M| j1)−1. Ac-
cept ifσ0 equals 1.

Written using π-notation, a sequential aggregate
signature is of the form

π−1
i (hi ∗π−1

i−1(hi−1∗π−1
i−2(· · ·π−1

2 (h2∗π−1
1 (h1)) · · ·))),

7

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

whereh j = H(s| j1 , M| j1). Verification evaluates the
permutations in the forward direction, peeling layers
away until the center is reached.

The trapdoor sequential aggregate signature scheme
is secure against forgery, assumingΠ is a homo-
morphic trapdoor permutation family. Even when
the would-be forger possesses all but one of the pri-
vate keys, he cannot frame the remaining honest user.
For the precise security model and proof of security
see [27].

3.4 Aggregating with RSA

We consider the details of instantiating the sequential
aggregate signature scheme presented above using the
RSA permutation family.

The RSA function was introduced by Rivest,
Shamir, and Adleman [26]. IfN = pq is the product of
two large primes anded = 1 modφ(N), thenπ(x) =
xe modN is a permutation onZ∗N , and π−1(x) =
xd modN is its inverse. Settings = (N,e) andt = (d)
gives a trapdoor permutation that is multiplicatively
homomorphic.

A difficulty arises since two users cannot share the
same modulusN. Thus the domains of the one-way
permutations belonging to the aggregating users dif-
fer, making it difficult to treat RSA as a family of trap-
door permutations. We give two approaches that allow
us to create sequential aggregate signatures from RSA
nonetheless. Thefirst method imposes more restric-
tions on the choices of signing keys than the second.
Aggregate signatures created by the second method
grow by one bit per signature.

Suppose then users have moduliN1, . . . ,Nn, with
N1 inmost. We assume that the moduli are approxi-
mately the same size, i.e., that�log2 N1�= �log2 N2�=
· · ·= �log2 Nn�. Let N be the minimum ofN1, . . . ,Nn.
The hash functionH maps into the set{1, . . . ,N−1};

hashes not inZ∗Ni
for somei can be dealt with by iter-

ating the hash, using the method given by Bellare and
Rogaway [1, Section 4].

In the first method, the moduli are constrained so
thatN1 < N2 < · · · < Nn. A sequential aggregate sig-
natureσi under the keys with moduliN1, . . . ,Ni is
such thatσi < Ni < Ni+1. Thus (except with neg-
ligibly small probability) σi is in the domain of the
permutation with modulusNi+1. Letting πi(x) =
xei modNi, we can apply the sequential aggregate sig-
nature scheme of Section 3.3 otherwise unchanged.

In the second method, the moduli are not ordered
and increasing. It can then happen thatσi is larger than
Ni+1. We deal with this by truncatingσi so that itfits.
Let � equal�log2 N�. Then 2� < N1, . . . ,Nn < 2�+1.
Now, if some i-element sequential aggregate signa-
ture σi is such thatσi ≥ 2�, we emit the bitbi ← 1
and continue aggregation usingσ′i ← σi− 2�; other-
wise we emit the bitbi← 0 and continue aggregation
usingσ′i ← σi. Then-bit vectorb1, . . . ,bn can be ap-
pended to the sequential aggregate signature, which
then grows by a single bit per aggregating user, or it
can be omitted and recovered by an exhaustive search
of the 2n possibilities.

These two schemes are no longer full-domain hash
signature schemes, but, since the moduli are all ap-
proximately the same size, Coron’s partial-domain
hash analysis [9] applies to either.

4 Conclusions

We surveyed two techniques for signature aggrega-
tion. Both methods provide the ability to compress
multiple signatures by distinct signers on distinct mes-
sages into a single signature. Thefirst method, based
on bilinear maps, provides general aggregation, where
anyone can combine signatures into an aggregate at
any time, without the cooperation of the signers. The

8

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

second method, based on homomorphic trapdoor per-
mutations such as RSA, provides only sequential ag-
gregation where aggregation must be done during the
signing process. General aggregation is more a power-
ful mechanism than sequential aggregation. For exam-
ple, sequential aggregation can be built from general
aggregation. Also, general aggregation seems easier
to use.

We discussed two applications for signature aggre-
gation: compressing certificate chains in a PKI and
compressing messages in secure routing protocols.
Both aggregation techniques are adequate for these
applications.

References

[1] M. Bellare and P. Rogaway. Random oracles
are practical: A paradigm for designing efficient
protocols. In D. Denning, R. Pyle, R. Ganesan,
R. Sandhu, and V. Ashby, editors,Proceedings
of CCS 1993, pages 62–73. ACM, 1993.

[2] M. Bellare and P. Rogaway. The exact security
of digital signatures: How to sign with RSA and
Rabin. In U. Maurer, editor,Proceedings of Eu-
rocrypt 1996, volume 1070 ofLNCS, pages 399–
416. Springer-Verlag, 1996.

[3] A. Boldyreva. Efficient threshold signature, mul-
tisignature and blind signature schemes based on
the gap-Diffie-Hellman-group signature scheme.
In Y. Desmedt, editor,Proceedings of PKC 2003,
volume 2567 ofLNCS, pages 31–46. Springer-
Verlag, 2003.

[4] D. Boneh. Twenty years of attacks on the RSA
cryptosystem.Notices of the AMS, 46(2):203–
13, 1999.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham.
Aggregate and verifiably encrypted signatures

from bilinear maps. In E. Biham, editor,Pro-
ceedings of Eurocrypt 2003, volume 2656 of
LNCS, pages 416–32. Springer-Verlag, 2003.

[6] D. Boneh, B. Lynn, and H. Shacham. Short
signatures from the Weil pairing. InProceed-
ings of Asiacrypt 2001, volume 2248 ofLNCS,
pages 514–32. Springer-Verlag, 2001. Full
paper: http://crypto.stanford.edu/
˜dabo/pubs.html.

[7] D. Chaum and T. Pedersen. Wallet databases
with observers. In E. Brickell, editor,Proceed-
ings of Crypto 1992, volume 740 ofLNCS, pages
89–105. Springer-Verlag, 1992.

[8] J.-S. Coron. On the exact security of full do-
main hash. In M. Bellare, editor,Proceedings of
Crypto 2000, volume 1880 ofLNCS, pages 229–
35. Springer-Verlag, 2000.

[9] J.-S. Coron. Security proof for partial-domain
hash signature schemes. In M. Yung, editor,Pro-
ceedings of Crypto 2002, volume 2442 ofLNCS,
pages 613–26. Springer-Verlag, 2002.

[10] J.-S. Coron and D. Naccache. Boneh et al.’s
k-element aggregate extraction assumption is
equivalent to the Diffie-Hellman assumption. In
C. S. Laih, editor,Proceedings of Asiacrypt
2003, LNCS. Springer-Verlag, 2003. To appear.

[11] FIPS 186-2. Digital signature standard, 2000.

[12] G. Frey, M. Muller, and H. R̈uck. The Tate pair-
ing and the discrete logarithm applied to ellip-
tic curve cryptosystems.IEEE Trans. Info. Th.,
45(5):1717–9, 1999.

[13] S. Galbraith, K. Harrison, and D. Soldera. Imple-
menting the Tate pairing. In C. Fieker and D. Ko-
hel, editors,Proceedings of ANTS V, volume
2369 ofLNCS, pages 324–37. Springer-Verlag,
2002.

9

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

[14] P. Gaudry, F. Hess, and N. Smart. Constructive
and destructive facets of Weil descent on elliptic
curves. J. Cryptology, 15(1):19–46, 2002.

[15] A. Joux and K. Nguyen. Separating decision
Diffie-Hellman from Diffie-Hellman in crypto-
graphic groups. Cryptology ePrint Archive,
Report 2001/003, 2001. http://eprint.
iacr.org/.

[16] S. Kent, C. Lynn, and K. Seo. Secure bor-
der gateway protocol (Secure-BGP). IEEE J.
Selected Areas in Comm., 18(4):582–92, April
2000.

[17] U. Maurer. Towards the equivalence of break-
ing the Diffie-Hellman protocol and computing
discrete logarithms. In Y. Desmedt, editor, Pro-
ceedings of Crypto 1994, volume 839 of LNCS,
pages 271–81. Springer-Verlag, 1994.

[18] A. Menezes, T. Okamoto, and P. Vanstone. Re-
ducing elliptic curve logarithms to logarithms in
a finite field. IEEE Trans. Info. Th., 39(5):1639–
46, 1993.

[19] S. Micali, K. Ohta, and L. Reyzin. Provable-
subgroup signatures. Unpublished manuscript,
1999.

[20] S. Micali, K. Ohta, and L. Reyzin. Accountable-
subgroup multisignatures (extended abstract). In
Proceedings of CCS 2001, pages 245–54. ACM
Press, 2001.

[21] S. Micali and R. Rivest. Transitive signature
schemes. In Proceedings of RSA 2002, volume
2271 of LNCS, pages 236–43. Springer-Verlag,
2002.

[22] A. Miyaji, M. Nakabayashi, and S. Takano.
New explicit conditions of elliptic curve traces
for FR-reduction. IEICE Trans. Fundamentals,
E84-A(5):1234–43, May 2001.

[23] K. Ohta and T. Okamoto. Multisignature
schemes secure against active insider attacks.
IEICE Trans. Fundamentals, E82-A(1):21–31,
1999.

[24] T. Okamoto. A digital multisignature scheme
using bijective public-key cryptosystems. ACM
Trans. Computer Systems, 6(4):432–41, Novem-
ber 1988.

[25] T. Okamoto and D. Pointcheval. The gap prob-
lems: A new class of problems for the security of
cryptographic primitives. In K. Kim, editor, Pro-
ceedings of PKC 2001, volume 1992 of LNCS,
pages 104–18. Springer-Verlag, 2001.

[26] R. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public key
cryptosystems. Commun. ACM, 21:120–126,
1978.

[27] H. Shacham. Sequential aggregate signa-
tures from trapdoor homomorphic permutations.
Cryptology ePrint Archive, Report 2003/091,
2003. http://eprint.iacr.org/.

10

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

II. On the Cost of Factoring RSA-1024

Adi Shamir Eran Tromer

Weizmann Institute of Science
{shamir,tromer}@wisdom.weizmann.ac.il

Abstract

As many cryptographic schemes rely on the hardness
of integer factorization, exploration of the concrete
costs of factoring large integers is of considerable in-
terest. Most research has focused on PC-based im-
plementations of factoring algorithms; these have suc-
cessfully factored 530-bit integers, but practically can-
not scale much further. Recent works have placed
the bottleneck at the sieving step of the Number Field
Sieve algorithm. We present a new implementation of
this step, based on a custom-built hardware device that
achieves a very high level of parallelism”for free”.
The design combines algorithmic and technological
aspects: by devising algorithms that take advantage
of certain tradeoffs in chip manufacturing technology,
efficiency is increased by many orders of magnitude
compared to previous proposals. Using this hypothet-
ical device (and ignoring the initial R&D costs), it ap-
pears possible to break a 1024-bit RSA key in one year
using a device whose cost is about $10M (previous
predictions were in the trillions of dollars).

1 Introduction

The security of many cryptographic schemes and pro-
tocols depends on the hardness offinding the factors
of large integers drawn from an appropriate distribu-

tion. The best known algorithm for factoring large in-
tegers is the Number Field Sieve (NFS)1, whose time
and space complexities are subexponential in the size
of the composite. However, little is known about the
real complexity of this problem. The evident confi-
dence in the hardness of factoring comes from observ-
ing that despite enormous interest, no efficient factor-
ing algorithm has been found.

To determine what key sizes are appropriate for a
given application, one needs concrete estimates for the
cost of factoring integers of various sizes. Predicting
these costs has proved notoriously difficult, for two
reasons. First, the performance of modern factoring
algorithms is not understood very well: their com-
plexity analysis is often asymptotic and heuristic, and
leaves large uncertainty factors. Second, even when
the exact algorithmic complexity is known, it is hard
to estimate the concrete cost of a suitable hypothetical
large-scale computational effort using current technol-
ogy; it’s even harder to predict what this cost would
be at the end of the key’s planned lifetime, perhaps a
decade or two into the future.

Due to these difficulties, common practice is to
rely on extrapolations from past factorization exper-
iments. Many such experiments have been performed
and published; for example, the successful factoriza-
tion of a 512-bit RSA key in 1999 [5] clearly indicated

1See [10] for the seminal works and [17] for an introduction.
The subtask we discuss is defined in Section 2.1.

11

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

the insecurity of such keys for many applications, and
prompted a transition to 1024-bit keys (often necessi-
tating software or hardware upgrades).2 The current
factorization record, obtained nearly four years later
in March 2003, stands at 530 bits [1].3 From this data,
and in light of the subexponential complexity of the
algorithm used, it seems reasonable to surmise that
factoring 1024-bit RSA keys, which are currently in
common use, should remain infeasible for well over a
decade.

However, the above does not reflect a fundamen-
tal economy-of-scale consideration. While the pub-
lished experiments have employed hundreds of work-
stations and Cray supercomputers, they have always
used general-purpose computer hardware. However,
when the workload is sufficiently high (either be-
cause the composites are large or because there are
many of them to factor), it becomes more efficient
to construct and employ custom-built hardware ded-
icated to the task. Direct hardware implementation
of algorithms is considerably more efficient than soft-
ware implementations, and makes it possible to elim-
inate the expensive yet irrelevant peripheral hardware
found in general-purpose computers. An example of
this approach is the EFF DES Cracker [7], built in
1998 at a cost of $210,000 and capable of breaking
a DES key in expected time of 4.5 days using 36864
search units packed into 1536 custom-built gate array
chips. Indeed, its equipment cost per unit of through-
put was much lower than similar experiments that
used general-purpose computers.

Custom-built hardware can go beyond efficient im-
plementation of standard algorithms— it allow spe-
cialized data paths, enormous parallelism and can
even use non-electronic physical phenomena. Taking
advantage of these requires new algorithms or adapta-
tion of existing ones. One example is the TWINKLE
device [18, 13], which implements the sieving step of

2Earlier extrapolations indeed warned of this prospect.
3Better results were obtained for composites of a special form,

using algorithms which are not applicable to RSA keys.

the NFS factoring algorithm using a combination of
highly parallel electronics and an analog optical adder.

Recently, D. J. Bernstein made an important ob-
servation [3] about the major algorithmic steps in the
NFS algorithm. These steps have a huge input, which
is accessed over and over many times. Thus, tradi-
tional PC-based implementations are very inefficient
in their use of storage: a huge number of storage bits
is just sitting in memory, waiting for a single pro-
cessor to access them. Most of the previous work
on NFS cost analysis (with the notable exception of
[21]) considered only the number of processor instruc-
tions, which is misleading because the cost of mem-
ory greatly outweighs the cost of the processor. In-
stead, one should consider the equipment cost per unit
of throughput, i.e., the construction cost multiplied by
the running time per unit of work.

Following this observation, Bernstein presented a
new parallel algorithm for the matrix step of the NFS
algorithm, based on a mesh-connected array of pro-
cessors. Intuitively, the idea is to attach a simple pro-
cessor to each block of memory and execute a dis-
tributed algorithm among these processors to get bet-
ter utilization of the memory. With this algorithm, and
by changing some adjustable parameter in the NFS al-
gorithm so as to minimize“cost per unit of through-
put” rather than instruction count, Bernstein’s algo-
rithm allows one to factor integers that are 3.01 times
longer compared to traditional algorithms (though
only 1.17 times longer when the traditional algorithms
are re-optimized for throughput cost). Subsequent
works [14, 8] evaluated the practicality of Bernstein’s
algorithm for 1024-bit composites, and suggested im-
proved versions that significantly reduced its cost.
With these hypothetical (but detailed) designs, the cost
of the matrix step was brought down from trillions of
dollars [21] to at most a few dozen million dollars (all
figures are for completing the task in 1 year).

This left open the issue of the other major step
in the Number Field Sieve, namely the sieving step.

12

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

For 1024-bit composites it was predicted that siev-
ing would require trillions of dollars,[21]4 and would
be impractical even when using the TWINKLE de-
vice. This article discusses a new design for a custom-
hardware implementation of the sieving step, which
reduces this cost to about $10M. The new device,
called TWIRL5, can be seen as an extension of the
TWINKLE device. However, unlike TWINKLE it
does not have optoelectronic components, and can
thus be manufactured using standard VLSI technol-
ogy on silicon wafers. The underlying idea is to use
a single copy of the input to solve many subproblems
in parallel. Since input storage dominates cost, if the
parallelization overhead is kept low then the resulting
speedup is obtained essentially for free. Indeed, the
main challenge lies in achieving this parallelism effi-
ciently while allowing compact storage of the input.
Addressing this involves myriad considerations, rang-
ing from number theory to VLSI technology. The re-
sulting design is sketched in the following sections,
and a more detailed description appears in [19].

2 Context

2.1 The Sieving Task

The TWIRL device is specialized to a particular task,
namely the sieving task which occurs in the Number
Field Sieve (and also in its predecessor, the Quadratic
Sieve). This section briefly reviews the sieving prob-
lem, with many simplifications.

The inputs of the sieving problem areR ∈ Z (sieve
line width), T > 0 (threshold) and a set of pairs(pi,ri)
where thepi are the prime numbers smaller than some
factor base bound B. There is, on average, one pair

4 [15] gave a lower bound of about $160M for a one-day effort.
This disregarded memory, but is much closer to our results since
the new device greatly reduces the amortized cost of memory.

5TWIRL stands for The Weizmann Institute Relation Locator.

per such prime. Each pair(pi,ri) corresponds to an
arithmetic progressionPi = {a : a ≡ ri (mod pi)}.
We are interested in identifying the sieve locationsa ∈
{0, . . . ,R−1} that are members of many progressions
Pi with largepi:

g(a) > T where g(x) =
∑

i:a∈Pi

logh pi

for some small constanth. It is permissible to have
“small” errors in this threshold check; in particular, we
round all logarithms to the nearest integer. For eacha
that exceeds the threshold, we also need tofind the set
{i : a ∈ Pi} of progressions that contribute tog(a).

We shall concentrate on 1024-bit composites and
a particular choice of the adjustable NFS parameters,
with R = 1.1 · 1015 and B = 3.5 · 109. We need
to performH = 2.7 · 108 such sieving tasks, called
sieve lines, that have different (though related) inputs.6

The numerical values that appear below refer to this
specific parameter choice.

2.2 Traditional Sieving

The traditional method of performing the sieving task
is a variant of Eratosthenes’s algorithm forfinding
primes. It proceeds as follows. An array of accumula-
torsC[a] is initialized to0. Then, the progressionsPi

are considered one by one, and for eachPi the indices
a ∈ Pi are calculated and the valuelogh pi is added to
every suchC[a]. Finally, the array is scanned tofind
thea values whereC[a] > T . The point is that when
looking at a specific Pi its members can be enumer-
ated very efficiently, so the amortized cost of alogh pi

contribution is low.

When this algorithm is implemented on a PC, we
cannot apply it to the full rangea = 0, . . . ,R−1 since

6In fact, for each sieve line we need to perform two sieves: a
“rational sieve” and an“algebraic sieve” (see Section 3.3). The
parameters given here correspond to the rational sieve, which is
responsible for most (two thirds) of the device’s cost.

13

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

there would not be enough RAM to storeR accumu-
lators. Thus, the range is broken into smaller chunks,
each of which is processed as above. However, if
the chunk size is not much larger thanB then most
progressions make very few contributions (if any) to
each chunk, so the amortized cost per contribution in-
creases. Thus, a large amount of memory is required,
both for the accumulators and for storing the input
(that is, the list of progressions). As Bernstein [3]
observed, this is inherently inefficient because each
memory bit is accessed very infrequently.

2.3 Sieving with TWINKLE

An alternative way of performing the sieving was pro-
posed in the TWINKLE device [18, 13], which oper-
ates as follows. Each TWINKLE device consists of a
wafer containing numerous independent cells, each in
charge of a single progressionPi. After initialization
the device operates synchronously forR clock cycles,
corresponding to the sieving range{0 ≤ a < R}. At
clock cyclea, the cell in charge of the progressionPi

emits the valueloghpi iff a ∈ Pi. The values emitted
at each clock cycle are summed to obtaing(x), and if
this sum exceeds the thresholdT then the integera is
reported. This event is announced back to the cells, so
that thei values of the pertainingPi is also reported.

The global summation is done using analog op-
tics: to“emit” the valuelog pi, a cellflashes an inter-
nal LED whose intensity is proportional tolog pi. A
light sensor above the wafer measures the total light
intensity in each clock cycle, and reports a success
when this exceeds a given threshold. The cells them-
selves are implemented by simple registers and rip-
ple adders. To support the optoelectronic operations,
TWINKLE uses Gallium Arsenide wafers (alas, these
are relatively small, expensive and hard to manufac-
ture compared to silicon wafers, which are readily
available). Compared to traditional sieving, TWIN-
KLE exchanges the roles of space and time:

Traditional TWINKLE
Sieve locations Space (accumulators) Time

Progressions Time Space (cells)

3 TWIRL

3.1 Approach

The TWIRL device follows the time-space reversal
of TWINKLE, but increases the throughput by simul-
taneously processing thousands of sieve locations at
each clock cycle. Since this is done with (almost) no
duplication of the input, the equipment cost per unit
of throughput decreases dramatically. Equivalently,
we can say that the cost of storing the huge input is
amortized across many parallel processes.

As a first step toward TWIRL, consider an elec-
tronic variant of TWINKLE which still operates at a
rate of one sieve location per clock cycle, but does so
using a pipelined systolic chain of electronic adders.7

Such a device would consist of a long unidirectional
bus, 10 bits wide, that connects millions of conditional
adders in series. Each conditional adder is in charge
of one progressionPi; when activated by an associ-
ated timer, it adds the valueloghpi to the bus. At time
t, the z-th adder handles sieve locationt − z. The
first value to appear at the end of the pipeline isg(0),
followed byg(1), . . . ,g(R), one per clock cycle. See
Fig. 1(a).

The parallelization is obtained by handling the sieve
range{0, . . . ,R − 1} in consecutive chunks of length
s = 4096.8 To do so, the bus is thickened by a fac-
tor of s and now containss logical lines, where each
line carries10-bit numbers. At timet, thez-th stage
of the pipeline handles the sieve locations(t−z)s+ i,

7This variant was considered in [13], but deemed inferior in
that context.

8s = 4096 applies to the rational sieve. For the algebraic sieve
(see Section 3.3) we use even higher parallelism:s = 32768.

14

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

)(

+0(

) +0(

) +0(

) +0() +1(

) +1(

) +1(

) +1(

+1() +2(

) +2(

) +2(

) +2(

) +2(

) +1(

) +1(

) +1(

) +1(

) +1(

)

)+0t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

−3

−4

−1

−2

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

p1

p3

p5

p2

p4

p1

p3

p5

p2

p4

(a) (b)

s()−1

s()−1

s()−1

s()−1

s()−1

Figure 1: Flow of sieve locations through the device in (a) a chain of adders and (b) TWIRL.

i ∈ {0, . . . ,s−1}. The first values to appear at the end
of the pipeline are{g(0), . . . ,g(s−1)}; they appear si-
multaneously, followed by successive disjoint groups
of sizes, one group per clock cycle. See Fig. 1(b).

We now have to add theloghpi contributions to all
s lines in parallel. Obviously, the naive solution of du-
plicating all the adderss times gains nothing in terms
of equipment cost per unit of throughput. If we try to
use the TWINKLE-like circuitry without duplication,
we encounter difficulties in scheduling and communi-
cating the contributions across the thick bus: the sieve
locations flow down the bus (in Fig. 1(b), vertically),
and the contributions should somehow travel across
the bus (horizontally) and reach an appropriate adder
at exactly the right time.

Accordingly, we replace the simple TWINKLE-like
cells by other units that perform scheduling and rout-
ing. Each such unit, called astation, handles some
small portion of the progressions; its interface consists
of bus input, bus output, clock and some circuitry for
loading the inputs. The stations are connected serially
in a pipeline, and at the end of the bus (i.e., at the out-
put of the last station) we place a threshold check unit
that produces the device output.

While the function of all the stations is identical, we
use a heterogeneous architecture that employs three
different station designs — thepi come in a very large
range of sizes, and different sizes involve very differ-
ent design tradeoffs. The progressions are partitioned
into stations according to the size of their intervalspi,
and the optimal station design is employed in each
case.

Due to space limitations, we describe only the most
important station design, which is used for the ma-
jority of progressions. The other station designs, and
additional details, can be found in [19].

3.2 Large primes

For every prime smaller thanB = 3.5·109 there is (on
average) one progression. Thus the majority of pro-
gressions have intervalspi that are much larger than
s = 4096, so they produceloghpi contributions very
seldom. For 1024-bit composites there is a huge num-
ber (about1.6 · 108) of such progressions; even with
TWINKLE’s simple emitter cells, we could not fit all
of them into a single wafer. The primary considera-

15

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

tion is thus to store these progressions as compactly
as possible, while maintaining a low cost per contri-
bution. Indeed, we will succeed in storing these pro-
gressions in compact DRAM-type memory using only
sequential (and thus very efficient) read/write access.
This necessitates additional support logic, but its cost
is amortized across many progressions. This efficient
storage lets us fit 4 independent 1024-bit TWIRL de-
vices (each of which is s = 4096 times faster than
TWINKLE) into a single 30cm silicon wafer.

The station design for these progressions (namely,
those with pi > 5.2·105) is shown in Fig. 2 (after some
simplifications). The progressions are partitioned into
8,490 memory banks, so that each bank contains many
(between 32 and 2.2·105) progressions. Each progres-
sion is stored in one of these memory banks, where at
any given time it is represented by an event of the form
(pi, �i, τi), whose meaning is: “at time τi, send

a loghpi contribution to bus line �i.”

Each memory bank is connected to a special-
purpose processor, which continuously processes
these events and sends corresponding emissions of the
form “add loghpi to bus line �i” to attached de-
livery lines, which span the bus. Each delivery line
acts as a shift register that carries the emissions across
the bus. Additionally, at every intersection between
a delivery line and a bus line there is a conditional
adder9; when the emission reaches its destination bus
line �i, the value loghpi is added to the value that
passes through that point of the bus pipeline at that
moment.

Thus, sieve locations are (logically) flowing down
the bus at a constant velocity, and emissions are be-
ing sent across the bus at a constant velocity. To en-
sure that each emission “hits” its target at the right
time, the two perpendicular flows must be perfectly

9We use carry-save adders, which are very compact and have
low latency (the tradeoff is that the bus lines now use a redun-
dant representation of the sums, which doubles the bit-width of
the bus).

synchronized, which requires a lot of care. However,
the benefit is that the cost per contribution is very low:
most of the time the event is stored very compactly in
the form of an event in DRAM; then, for a brief mo-
ment it occupies the processor, and finally it occupies
a delivery line for the minimum possible duration —
the amount of time needed to travel across the bus to
the destination bus line.

It is the processor’s job to ensure accurate schedul-
ing of emissions.10 The ideal way to achieve this
would be to store the events in a priority queue that
is sorted by the emission time τi. Then, the processor
would simply repeat the following loop:11

1. Pop the next event (pi, �i, τi) from the priority
queue.

2. Wait until time τi and then send an emission to
the delivery line, addressed to bus line �i.

3. Compute the next event (pi, �
′
i, τ

′
i) of this pro-

gression, and push it into the priority queue.

Standard implementations of priority queues (e.g., the
heap data structure) are unsuitable for our purposes,
due to the passive nature of standard DRAM and high
latency. First, the processor would need to make a log-
arithmic number of memory accesses at each iteration.
Worse yet, these memory accesses occur at unpre-
dictable places, and thus incur a significant random-
access overhead. Fortunately, by taking advantage of
the unique properties of the sieving problem we can
get a good approximation of a priority queue that is
highly efficient.

Briefly, the idea is as follows. The events are read
sequentially from memory (step 1 above) in a cyclic
order, at constant rate. When the new calculated event

10In the full design [19], there is an additional component,
called a buffer, which performs fine-tuning and load balancing.

11For simplicity, here we ignore the possibility of collisions.

16

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

Pr
oc

es
so

r
Pr

oc
es

so
r

Memory

Pr
oc

es
so

r
Memory

Memory

Figure 2: Schematic structure of a (simplified) largish station.

is written back to memory (step 3 above), it is written
to a memory address that will be read just before its
schedule time τ ′i . Since both τ ′i and the read schedule
are known, this memory address is easily calculated
by the processor. In this way, after a short stabilization
period the processor always reads imminent events,12

exactly as desired. Each iteration now involves just
one sequential-access read operation and one random-
access write operation. In addition, it turns out that
with appropriate choice of parameters we can cause
the write operations to always occur in a small window
of activity, just behind the “ read head” . We may thus
view the 8,490 memory banks as closed rings of var-
ious sizes, with an active window “twirling” around
each ring at a constant linear velocity. Each such slid-
ing window is handled by a fast SRAM-based cache,
whose content is swapped in and out of DRAM in
large blocks. This allows the bulk of events to be held
in DRAM. Better yet, now the only interface to the
DRAM memory is through the SRAM cache; this al-
lows elimination of various peripheral circuits that are
needed in standard DRAM.

12Collisions are handled by adding appropriate slacks.

3.3 Other Highlights

Other station designs. For progressions with small
interval (pi < 5.2 · 105), it is inefficient to contin-
uously shuttle the progression state to and from pas-
sive memory. Thus, each progression is handled by
an independent active emitter cell that includes an in-
ternal counter (similarly to TWINKLE). An emitter
serves multiple bus lines, using a variant of the de-
livery lines described above. Using certain algebraic
tricks, these cells can be made very compact. Two
such station designs are used: for the progressions
with medium-sized intervals, many progressions share
the same delivery lines (since emissions are still not
very frequent); this requires some coordination logic.
For very small intervals, each emitter cell has its own
delivery line.

Diaries. Recall that in addition to finding the sieve
locations a whose contributions exceed the threshold,
we also want to find the sets {i : a ∈ Pi} of rele-
vant progressions. This is accomplished by adding a
diary to each processor (it suffices to handle the pro-
gressions with large interval). The diary is a memory
bank which records every emission sent by the pro-
cessor and saves it for a few thousand clock cycles
— the depth of the bus pipeline. By that time, the

17

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

corresponding sieve location a has reached the end of
the bus and the accumulated sum of logarithms g(a)
was checked. If the threshold was exceeded, this is
reported to all processors and the corresponding diary
entries are recalled and collected. Otherwise, these di-
ary entries are discarded (i.e., their memory is reused).

Cascading the sieves. In the Number Field Sieve we
have to perform two sieving tasks in parallel: a ra-
tional sieve whose parameters were given above, and
an algebraic sieve which is usually more expensive
since it has a large value of B. However, we suc-
ceed in greatly reducing the cost of the algebraic sieve
by using an even higher parallelization factor for it:
s = 32,768. This is made possible by an alteration
that greatly reduces the bus width: the algebraic sieve
needs only to consider the sieve locations that passed
the rational sieve, i.e., about one in 5,000. Thus we
connect the input of the algebraic sieve to the output of
the rational sieve, and in the algebraic sieve we replace
the thick bus and delivery lines by units that consider
only the sieve locations that passed the rational sieve.
We now have a much narrower bus containing only
32 lines, though each line now carries both a partial
sum (as before) and the index a of the sieve location
to which the sum belongs. Logically, the sieve loca-
tions still travel in chunks of size s, so that the regular
and predictable timing is preserved. Physically, only
the “ relevant” locations (at most 32) in each chunk are
present; emissions addressed to the rest are discarded.

Fault tolerance. The issue of fault tolerance is very
important, as silicon wafers normally have multiple
local faults. When the wafer contains many indepen-
dent small chips, one usually discards the faulty ones.
However, for 1024-bit composites TWIRL is a wafer-
scale design and thus must operate in the presence of
faults. All large components of TWIRL can be made
fault-tolerant by a combination of techniques: routing
around faults, post-processing and re-assigning faulty
units to spare. We can tolerate occasional transient
faults since the sieving task allows a few errors; only
the total number of good a values matters.

4 Cost

Based on the detailed design, we estimated the cost
and performance of the TWIRL device using today’s
VLSI technology (namely, the 0.13µm process used
in many modern memory chips and CPUs). While
these estimates are hypothetical, they rely on a de-
tailed analysis and should reasonably reflect the real
cost. It should be stressed that the NFS parameters as-
sumed are partially based on heuristic estimates. See
[19] for details.

1024-bit composites. Recall that to implement NFS
we have to perform two different sieving tasks, a ratio-
nal sieve and an algebraic sieve, which have different
parameters. Here, the rational sieve (whose param-
eters were given above) dominates the cost. For this
sieve, a TWIRL device requires 15,960mm2 of silicon
wafer area, so we can fit 4 of them on a 30cm silicon
wafer. Most of the device area is occupied by the large
progressions (and specifically, 37% of the device is
used for their DRAM banks). For the algebraic sieves
we use a higher parallelization factor, s = 32,768.
One algebraic TWIRL device requires 65,900mm2 of
silicon wafer area — a full wafer — and here too most
of the device is occupied by the largish progressions
(the DRAM banks occupy 66%).

The devices are assembled in clusters that con-
sist of 8 rational TWIRLs (occupying two wafers)
and 1 algebraic TWIRL (on a third wafer), where
each rational TWIRL has a unidirectional link to
the algebraic TWIRL over which it transmits 12 bits
per clock cycle. A cluster handles a full sieve line
in R/32,768 clock cycles, i.e., 33.4 seconds when
clocked at 1GHz. The full sieving involves H sieve
lines, which would require 194 years when using a
single cluster (after a heuristic that rules out 33% of
the sieve locations). At a cost of $2.9M (assum-
ing $5,000 per wafer), we can build 194 indepen-
dent TWIRL clusters that, when run in parallel, would
complete the sieving task within 1 year.

18

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

After accounting for the cost of packaging, power
supply and cooling systems, adding the cost of PCs
for collecting the data and leaving a generous error
margin,13 it appears realistic that all the sieving re-
quired for factoring 1024-bit integers can be com-
pleted within 1 year by a device that costs $10M to
manufacture. In addition to this per-device cost, there
would be an initial NRE cost on the order of $20M
(for design, simulation, mask creation, etc.).

512-bit composites. Since 512-bit factorization is
well-studied [18, 13, 8] and backed by experimental
data [5], it is interesting to compare 512-bit TWIRL
to previous designs. We shall use the same 512-bit pa-
rameters as in [13, 8], though they are far from optimal
for TWIRL. With s = 1,024, we can fit 79 TWIRLs
into a single silicon wafer; together, they would han-
dle a sieve line in 0.00022 seconds (compared to 1.8
seconds for TWINKLE wafer and 0.36 seconds for
a full wafer using mesh-based design of [8]). Thus,
in factoring 512-bit composites the basic TWIRL de-
sign is about 1,600 times more cost effective than the
best previously published design [8], and 8,100 times
more cost effective than TWINKLE. Such a wafer full
of TWIRLs, which can be manufactured for about
$5,000 in large quantities, can complete the sieving for
512-bit composites in under 10 minutes (this is before
TWIRL-specific optimizations which would halve the
cost, and using the standard but suboptimal parameter
choice).

768-bit composites. For 768-bit composites, a sin-
gle wafer containing 6 TWIRL clusters can complete
the sieving in 95 days. This wafer would cost about
$5,000 to manufacture — one tenth of the RSA-768
challenge prize [20]. Unfortunately these figures are
not easy to verify experimentally, nor do they provide
a quick way to gain $45,000, since the initial NRE cost
remains $10M-$20M.

13It is a common rule of thumb to estimate the total cost as
twice the silicon cost; to be conservative, we triple it.

5 Conclusions

It has been often claimed that 1024-bit RSA keys are
safe for the next 15 to 20 years, since when applying
the Number Field Sieve to such composites both the
sieving step and the linear algebra step would be un-
feasible (e.g., [4, 21] and a NIST guideline draft [16]).
However, these estimates relied on PC-based imple-
mentations. We presented a new design for a custom-
built hardware implementation of the sieving step,
which relies on algorithms that are highly tuned for
the available technology. With appropriate settings of
the NFS parameters, this design reduces the cost of
sieving to about $10M (plus a one-time cost of $20M).
Recent works [14, 9] indicate that for these NFS pa-
rameters, the cost of the matrix step is even lower.

Our estimates are hypothetical and rely on numer-
ous approximations; the only way to learn the precise
costs involved would be to perform a factorization ex-
periment. However, it is difficult to identify any spe-
cific issue that may prevent a sufficiently motivated
and well-funded organization from applying the Num-
ber Field Sieve to 1024-bit composites within the next
few years. This should be taken into account by any-
one planning to use a 1024-bit RSA key.

Acknowledgment. This work was inspired by Daniel
J. Bernstein’s insightful work on the NFS matrix step,
and its adaptation to sieving by Willi Geiselmann
and Rainer Steinwandt. We thank the latter for in-
teresting discussions of their design and for suggest-
ing an improvement to ours. We are indebted to Ar-
jen K. Lenstra for many insightful discussions, and
to Robert D. Silverman, Andrew “bunnie” Huang,
Michael Szydlo and Markus Jakobsson for valuable
comments and suggestions. Early versions of [12] and
the polynomial selection programs of Jens Franke and
Thorsten Kleinjung were indispensable in obtaining
refined estimates for the NFS parameters.

19

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

References

[1] F. Bahr, J. Franke, T. Kleinjung, M. Lochter,
M. Böhm, RSA-160, e-mail announcement, Apr.
2003, http://www.loria.fr/∼zimmerma/
records/rsa160

[2] Daniel J. Bernstein, How to find small factors of
integers, manuscript, 2000,
http://cr.yp.to/papers.html

[3] Daniel J. Bernstein, Circuits for integer factor-
ization: a proposal, manuscript, 2001,
http://cr.yp.to/papers.html

[4] Richard P. Brent, Recent progress and prospects
for integer factorisation algorithms, proc. CO-
COON 2000, LNCS 1858 3–22, Springer-
Verlag, 2000

[5] S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen,
P.L. Montgomery, B. Murphy, H.J.J. te Riele,
et al., Factorization of a 512-bit RSA modu-
lus, proc. Eurocrypt 2000, LNCS 1807 1–17,
Springer-Verlag, 2000

[6] Don Coppersmith, Modifications to the number
field sieve, Journal of Cryptology, 6(3) 169–180,
1993

[7] Electronic Frontier Foundation, DES Cracker
Project, http://www.eff.org/descracker

[8] Willi Geiselmann, Rainer Steinwandt, A dedi-
cated sieving hardware, proc. PKC 2003, LNCS
2567 254–266, Springer-Verlag, 2002

[9] Willi Geiselmann, Rainer Steinwandt, Hard-
ware to solve sparse systems of linear equations
over GF(2), proc. CHES 2003, LNCS, Springer-
Verlag, to appear.

[10] Arjen K. Lenstra, H.W. Lenstra, Jr., (eds.), The
development of the number field sieve, Lecture
Notes in Math. 1554, Springer-Verlag, 1993

[11] Arjen K. Lenstra, Bruce Dodson, NFS with
four large primes: an explosive experiment,
proc. Crypto ’95, LNCS 963 372–385, Springer-
Verlag, 1995

[12] Arjen K. Lenstra, Bruce Dodson, James Hughes,
Wil Kortsmit, Paul Leyland, Factoring estimates
for a 1024-bit RSA modulus, proc. Asiacrypt
2003, LNCS, Springer-Verlag, to appear.

[13] Arjen K. Lenstra, Adi Shamir, Analysis and opti-
mization of the TWINKLE factoring device, proc.
Eurocrypt 2002, LNCS 1807 35–52, Springer-
Verlag, 2000

[14] Arjen K. Lenstra, Adi Shamir, Jim Tomlinson,
Eran Tromer, Analysis of Bernstein’s factoriza-
tion circuit, proc. Asiacrypt 2002, LNCS 2501
1–26, Springer-Verlag, 2002

[15] Arjen K. Lenstra, Eric R. Verheul, Selecting
cryptographic key sizes, Journal of Cryptology,
14(4) 255–293, 2002

[16] NIST, Key management guidelines, Part 1:
General guidance (draft), Jan. 2003,
http://csrc.nist.gov/CryptoToolkit/

tkkeymgmt.html

[17] Carl Pomerance, A Tale of Two Sieves, Notices
of the AMS, 1473–1485, Dec. 1996

[18] Adi Shamir, Factoring large numbers with the
TWINKLE device (extended abstract), proc.
CHES’99, LNCS 1717 2–12, Springer-Verlag,
1999

[19] Adi Shamir, Eran Tromer, Factoring large num-
bers with the TWIRL device, proc. Crypto 2003,
LNCS 2729, Springer-Verlag, 2003

[20] RSA Security, The new RSA factoring challenge,
web page, Jan. 2003,
http://www.rsasecurity.com/rsalabs/

challenges/factoring/

[21] Robert D. Silverman, A cost-based security
analysis of symmetric and asymmetric key
lengths, Bulletin 13, RSA Security, 2000,
http://www.rsasecurity.com/rsalabs/

bulletins/bulletin13.html

20

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

III. Physical One-Way Functions

Ravikanth S. Pappu ∗

Abstract

How can we assign unique, tamper-resistant, and
unforgeable identifiers to everyday objects at a very
low cost? Physical One-Way Functions (POWFs)
provide a novel approach to answering this ques-
tion. POWFs can be obtained from the inherent three-
dimensional microstructure of a large class of physi-
cal systems known as mesoscopic systems. They are
inexpensive to fabricate and prohibitively difficult to
duplicate; they admit no compact mathematical rep-
resentation and are intrinsically tamper-resistant. In
this paper, we show how POWFs are obtained by us-
ing coherent scattering of visible laser radiation from
inhomogeneous structures and experimentally demon-
strate their properties. We also discuss potential at-
tacks on POWFs and possible applications.

1 Introduction

Humans have long used physical structures to au-
thenticate objects of value. As early as the 4th mil-
lennium BC, the Mesopotamian civilization was using
cylindrical seals to certify the contents of envelopes,
waybills, ceramics, and bricks. These seals, small
cylindrical stones carved with a decorative pattern,
were rolled over wet clay to mark the target object.
Their use was contemporaneous with the use of clay
tablets in everyday life and lasted over two thousand
years [4].

∗Research carried out at the MIT Media Laboratory; author
may be reached at ravi@thingmagic.com

Modern banknotes incorporate a variety of differ-
ent structural features that aid the goals of authen-
tication and anti-counterfeiting. Among these are
security threads, hologram foils, iridescent stripes,
color-shifting inks, and as proposed recently, radio-
frequency identification tags [25]. The number and
complexity of security features included on banknotes
is an indication of the increasing capability of forgers
to reproduce highly specialized features with very low
cost equipment. While forgers of yesteryear needed
access to expensive printing equipment and skilled
engravers, highly sophisticated two-dimensional re-
prographic systems are easily available to the general
public today.

Fundamentally, two major changes have occurred
since ancient Mesopotamia. First, the creation of
complicated two-dimensional structures with specific
properties no longer requires the skill that it once
did. Second, the manufacturing and digital revolutions
have allowed forgers to stop worrying about the struc-
tural features and focus on the logical content (e.g.,
the denomination of currency as opposed to the physi-
cal banknote) of the forged object. Because it is much
easier to work with bits than it is with atoms, the asym-
metry in effort between the ”good guys” and ”bad
guys” and the time lag between the original object and
a high-quality forgery has decreased substantially.

The search for uncloneable and tamper-evident
physical structures leads ultimately to the theoreti-
cally compelling concept of Quantum Money [1]. The
key idea here is to augment banknotes with a number
of isolated two-state quantum systems, such as spin
1/2 nuclei or photons with orthogonal polarizations,

21

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

which are encoded with the identity of the note. In
order to successfully forge the note, a forger has to
prepare a counterfeit banknote in the same quantum
state as the original. This is theoretically impossi-
ble [24]. There are two principal attributes of Quan-
tum Money that make it substantially different from
all previous methods of physical authentication. First,
the security is provable via the quantum no-cloning
theorem which states that an arbitrary, unknown quan-
tum state cannot be cloned with certainty. Second,
it makes an explicit connection between physical au-
thentication and the framework of modern cryptogra-
phy. Practically speaking, however, quantum decoher-
ence, i.e., the loss of the quantum identity of isolated
quantum monetary systems by interacting with the en-
vironment, prevents any useful realization of the con-
cept. While Quantum Money is not a POWF, it does
provide a clear example of a physical authentication
system whose non-clonability is provable.

This is the context in which we situate POWFs.

2 Motivation: arms control treaties

In this section, we provide an example where
POWFs may be used with benefit.

Arms control treaties typically place numerical lim-
its on treaty-limited weapons systems. As opposed to
treaties which ban certain types of weapons outright,
treaty-limited items (TLIs) require a tagging system
to ensure that more than the allowed number of items
exist at any given time [9, 10]. Treaty verification then
consists of verifying that the total number of items
is below the limit established for that item under the
treaty.

The goals of the tagging system are unique: it must
provide unambiguous verification of TLIs without al-
lowing the monitoring party undue advantage in track-
ing the weapons systems for purposes of intelligence
gathering and espionage. The requirements on the tag

system are discussed at length in [10] and are repro-
duced here: (a) it must be impossible to copy the tag
without detection (b) it must be impossible to spoof
the tagging system or to fool it into thinking that a
valid tag exists where there actually is none (c) it must
not be possible to move the tag from one weapon
to another without the knowledge of the monitoring
party (d) the tagging system must not aid the monitor-
ing party in locating the weapons in real time (e) the
tag should only reveal information required for pur-
poses of verification (f) the system must be reliable
and have a low false alarm rate (g) the physical size
and the power requirements of the tag must be mini-
mal (h) the tag must be reliable in the range of envi-
ronments that the weapon is exposed to (i) the system
should be inexpensive.

Further, the process of creating and reading tags
cannot contain any secrets and a complete description
of the tag reading process must be written into the lan-
guage of the treaty so that tags can be read in an ob-
jective way.

In this article, we will show how POWFs can be
employed in situations where complete transparency
is required at the system level while providing all the
requisite features at the tag level.

3 The physics of POWFs

A typical POWF embodiment is a token (e.g., a
credit card, access control fob) encapsulating a small,
optically translucent three-dimensional microstruc-
ture which contains inhomogeneities (also referred to
as scatterers) that have features at the scale of the
wavelength of visible light. The token is probed using
a laser beam as shown in Figure 1 below. The scatter-
ing of such coherent radiation from an inhomogeneous
medium produces laser speckle fluctuations, which is
the result of interference of light that has taken a mul-
titude of paths through the token. This speckle pattern
is a complicated function of the microstructure of the

22

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

Figure 1: Coherent multiple scattering from an inhomogeneous structure results in a laser speckle pattern that
can be reduced to a binary string. This string can be used as a unique identifier for the structure. This process may
be viewed as physically hashing the complicated 3D structure down to a fixed-length key. The Gabor Transform
is a means of filtering noisy speckle patterns and reducing them to a fixed-length bitstring called a Gabor Hash.
Both these terms are defined in the text.

token and is used to derive a unique identifier for the
structure.

We will show in the rest of this article that

• each token can produce not one but a very large
number of identifiers. The availability of a large
number of identifiers allows its deployment in
challenge-response protocols.

• under certain conditions, each of these identifiers
is a string of random bits.

• making small changes to the token’s structure
causes a given identifier to completely decorre-
late

Before we press on into the physics of POWFs,
consider a general model for the underlying physi-
cal mechanism. Typically, we have a physical sys-
tem S encapsulated in a token and a physical probe P
that interacts with S to produce an output O which is
recorded by a detector D (Figure 2). How can we build
a system that allows us to repeatably and robustly dis-
tinguish S from others in its class? Clearly, there are
several choices for each of the elements in the system:
S could be drawn from a large number of physical sys-
tems (e.g., regular vs. disordered, 2D vs. 3D); the

probe P could possess several attributes (electromag-
netic vs. acoustic, single frequency vs. broadband);
and the detector could be anything from a voltmeter to
a digital camera to X-ray film depending on the nature
of S and P.

The long list of candidate systems, probes, and de-
tectors may be narrowed down by considering the cru-
cial properties they must have in order to meet our re-
quirements.

• Uniqueness requires that the output O as
recorded by D have a large number of statistically
independent degrees of freedom

• Tamper resistance requires that the output O have
a sensitive dependence on the state of S

• Unforgeability requires that the system S be diffi-
cult and expensive to clone regardless of the prior
knowledge a forger has of P and O

Mesoscopic systems are a large class of physical
systems that possesses all these properties. They
are so named because they lie in a region between
macroscopic systems, which are governed by the laws
of classical physics, and microscopic systems, which

23

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

Token T

System S

Probe P

Detector D

Output O

Figure 2: A general model for a physical authentica-
tion system

are governed by quantum physics. The fundamental
distinguishing feature of mesoscopic systems is the
preservation of coherence as radiation travels through
the system i.e., the wavelength of the radiation is un-
changed and its phase relative to that of the incident
radiation is predictable after it exits the system. When
disordered mesoscopic systems are probed with co-
herent radiation, the interference pattern after the ra-
diation has passed through the structure is called a
speckle pattern or a conductance fluctuation [13, 22].
By contrast, ordered mesoscopic systems produce reg-
ular diffraction patterns which are easily predictable
given knowledge of the structure and the probe. In
fact it is possible to predict the structural configura-
tion by observing the diffraction patterns, a fact that is
commonly used in X-ray crystallography. Hereafter,
we will focus our attention on disordered mesoscopic
systems.

There are generally four length scales of impor-
tance in these systems. The first is the wavelength λ
of the incident probe. The second is the mean free
path l which is the average distance between scatter-
ing events within the physical system S. The third is
the size of the physical system itself denoted by L and

finally, we have the coherence length1 of the probe ra-
diation Lc. The mesoscopic regime is governed by the
inequality λ � l � L � Lc. In the mesoscopic limit
of scattering in a three-dimensional structure [7, 8],
the mean free path l between elastic collisions with
scatterers is much larger than the wavelength λ of the
radiation, but the thickness L of the structure is much
smaller than the coherence length of the probe. In this
regime of coherent multiple scattering, if the cross-
sectional area of a beam is A, then moving A/(Ll)
scatterers will produce an uncorrelated speckle pat-
tern, as will rotating the incident beam by an angle
δθ = λ/(2πL) [2]. This phenomenon is the physical
basis for POWFs.

We have thus narrowed down the choices of system
components to:

• Physical system S - a 3D structure in the meso-
scopic regime i.e., whose size L lies between the
wavelength of the probe radiation and the coher-
ence length of the radiation. This structure con-
tains numerous scatterers which have features at
the scale of the wavelength of the physical probe.

• Physical probe P - coherent radiation at a given
wavelength λ

• Interaction mechanism between the P and S is co-
herent multiple scattering i.e., the interaction of
coherent radiation with multiple scatterers in the
disordered microstructure

The choice of detector D depends intimately on the
wavelength of radiation. We note that although meso-
scopic behavior is observed at all wavelengths, our re-
quirement for unforgeability places an upper bound on
the wavelength. Specifically, the size (in units of λ) of
the structure L and its disorder characterized by the
mean free path l must be such that it is prohibitive to

1The coherence length is defined as the distance light is able
to travel from the laser before its phase becomes unpredictable
relative to that at the laser.

24

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

clone the disordered mesoscopic system. Practically
speaking, given the state of the art in 3D microfab-
rication, this restricts the range of wavelengths to be
below one micron.

4 Implementation

In the embodiment described here [20, 21], we used
a λ = 632.8 nm HeNe laser beam to illuminate
10 × 10 × 2.5 mm3 optical epoxy tokens containing
500-800 µm glass spheres. This represents about a
penny’s worth of materials; the cost of the reader can
be anything from a few dollars to several hundreds of
dollars depending on the precision of the laser point-
ing system. The density of spheres was chosen to give
an average spacing on the order of 100 µm, which
equals the photon mean free path in the limit of strong
scattering applicable here [22]. The resulting speckle
patterns were recorded with an inexpensive 320×240
pixel CCD camera. Repeatable positioning, i.e., me-
chanical registration, of the token with respect to the
probe and the detector is achievable without recourse
to high-precision (and expensive) systems.

Although it is possible to use the speckle patterns
directly as identifiers, this is error-prone owing to the
noisy readings of speckle patterns and their inherent
sensitivity to small changes in the state of the probe.
Figure 3 provides an example of the noise that can
occur in a POWF system. In order to reduce the ef-
fects of noise, we transform the speckle pattern into a
bit string using a multiscale Gabor Transform [11, 6].
The Gabor Transform is a complex-valued transform
that represents speckle image intensity as a linear
combination of oriented, modulated Gaussian filters
at multiple scales. The parameters of the transform
[19] are dependent on geometry of the specific optical
implementation [20] and were experimentally deter-
mined in the embodiment discussed in this article.

20 60 100 140 180 220
0

50

100

150

pixel #

sp
ec

kl
e

in
te

ns
ity

Figure 3: Noise sources in a speckle image. The plot
shows six overlaid traces of speckle image intensity
taken along a single row of a 320 × 240 raw speckle
image before it was Gabor-transformed. Each trace
was obtained after the token was removed and re-
placed in the reader after routine handling. First, there
is pixel-scale noise, which is either due to the optical
system or induced by the CCD detector. Then, there
is noise at the scale of several pixels, which occurs at
the physical interaction level. A third source of noise
is due to misregistration of the token, shown as a trace
horizontally displaced from the rest by about 10 pix-
els. Another source of noise, not shown in the figure,
is due to changes in average illumination levels which
would manifest itself as a vertical displacement of one
trace from the other.

To summarize what we have said so far, a single
probe of the 3D microstructure results in a 320 × 240
pixel speckle intensity image that is reduced to a bit-
string of length 2400. This string is the unique iden-
tifier of the 3D microstructure when interrogated with
a probe beam in a given state. Hereafter, we will refer
to this bitstring as a Gabor Hash.

5 Experiments

In this section we present several experimental re-
sults that elucidate the properties of POWFs. The first

25

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

20 40 60 80 100
0

0.25

0.5

0.75

1

bit number

bi
t p

ro
ba

bi
lit

y

Figure 4: The plot depicts the probability that a bit in
any given location of a Gabor Hash is set or cleared.
Although only a 100-bit window is shown for clarity,
this behavior is observed over all the bits.

experiment explores the average probability that a bit
in any given location is either 0 or 1. The average
is taken over 576 Gabor Hashes which were derived
from four different tokens, each of which was probed
at 144 distinct locations. Figure 4 plots this probabil-
ity, which hovers around 0.5. This result clearly indi-
cates that each bit is equally likely to be set or cleared
i.e., the bitstring derived from a POWF is a bit-wise
maximum entropy code.

The second experiment focuses on how effective the
Gabor Hash is at distinguishing one token from an-
other. To ascertain this, we used the Gabor Hashes
gathered in the previous experiment in an enroll-
ment/authentication scenario. The bitstrings were en-
rolled in a database and candidate bitstrings were (a)
matched to corresponding enrolled bitstrings and (b)
matched to all 575 non-corresponding enrolled bitst-
ings. The metric used for matching was a normal-
ized Hamming Distance (i.e, every bit being different
equals a distance of 1). The like distribution, which
is the Hamming Distance distribution obtained from
matching Gabor Hashes which had the same origin
and the unlike distribution obtained by matching Ga-
bor Hashes which had distinct origins are shown in
Figure 5.

We learn several facts about POWFs from Figure
5. The distance between Gabor Hashes that have the
same origin is usually smaller than the distance be-
tween hashes that have different origins. The aver-
age Hamming Distance between Gabor Hashes that
have different origins is 0.5 implying that one can do
no better at guessing one from the other than coin-
flipping. The fact that the like distribution may be
modeled by a binomial distribution with 233 indepen-
dent degrees of freedom implies that this implemen-
tation of POWFs is capable of distinguishing between
2233 ≈ 1070 Gabor Hashes. However, only a small
subset of these Gabor Hashes are available from the
same token. The number of available Gabor Hashes
from any given token is calculated below.

From theory, we know that moving the probe beam
by a small angle or displacing a small number of scat-
terers (see section 3) causes the speckle pattern to
decorrelate completely. For our implementation the
theoretically calculated value of angular displacement
of the probe beam required to cause decorrelation of
the speckle pattern is δθ = λ/(2πL) = 4 × 10−5 rad.
In practice, this value is ∼ 40 times greater and equal
to 1.7 × 10−3 rad. Linear sensitivity is challenging to
calculate theoretically, but was experimentally deter-
mined to be 60µm. These results place constraints on
the mechanical system that must be used to register
the tokens with respect to the probe beam. Figure 6
shows the linear and angular sensitivity plots. For our
100 mm2 token, assuming that the range of possible
probe angles are bounded by ∆θ = π/2, we have a to-
tal of 2.37× 1010 ≈ 234 available Gabor Hashes from
any given token. This number may be made larger by
using higher precision probe positioning equipment.
Obviously, using such equipment would increase the
cost of the reader substantially.

One final point to note is the crossover point be-
tween distributions in Figure 5. The two distributions
intersect at a Hamming Distance of 0.41. This means
that up to 2400 ∗ 0.41 = 984 bits can be wrong in a
given Gabor Hash before we reject it as being unre-

26

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 d

is
tr

ib
ut

io
n

normalized Hamming distance

Figure 5: The normalized Hamming distances mea-
sured for Gabor Hashes. The unlike distribution, in
gray, shows the distribution of 165,600 distances be-
tween unlike bitstrings; the mean of the dashed Gaus-
sian fit is 0.50 - half the bits differ on average - and the
variance is 1.07×10−3 (equivalent to 233 independent
binomial trials). Doubling the length of the bitstring to
4800 bits by concatenating readings from two angles
produces a distribution with a Gaussian fit shown by
the solid curve, reducing the variance to 5.42 × 10−4,
corresponding to 461 independent binomial trials. The
like distribution, in white, shows the errors in reread-
ing 576 like bitstrings after candidates are presented
to the enrolled database; the mean of 0.25 equals 1800
bits being matched correctly.

lated to a previously enrolled one. While this amount
of noise tolerance is essential to keep the cost of the
readers low, it offers increased probability of success-
ful spoofing for an attacker. We will have more to
say about this later. The final experiment demon-
strates tamper-resistance. One Gabor Hash was en-
rolled in a database, and a second one was obtained
from the same token after it was intentionally dam-
aged by drilling a 1 mm deep hole in its surface with
a drill of diameter 533µm. The distance between the
two hashes was 0.46, thereby physically demonstrat-
ing avalanche. Figure 7 shows the results of this ex-
periment.

Thus far, we have experimentally characterized
both uniqueness - a large number of independent de-
grees of freedom in the Gabor Hash - and tamper-
resistance - a sensitive dependence on the state of the
system and the probe - in our embodiment of POWFs.
We leave the discussion of unforgeability to a later
section.

6 Abstraction

From a cryptographic point of view, it is useful
to model POWFs as follows [17]. A (k, n)-POWF
Π comprises a set of values {Π(i)}n

i=1, where each
Π(i) ∈ {0, 1}k is generated independently and uni-
formly at random. Π may be conceptualized as a tape
consisting of n cells, each of which contains a k-bit
string. The value n will in general be finite in a POWF,
as a reflection of practical limitations on the number of
possible ways in which the underlying physical object
may be read. This representation assumes that it is
possible to go from a 2400-bit Gabor Hash with cor-
relations between bits to a shorter 233-bit sequence of
uncorrelated bits. This may be accomplished by one
of the many available methods of entropy coding [5].

In response to a challenge i ∈ {1, 2, . . . , n} to
POWF Π, the response Π(i) is returned. This value,
however, is communicated through a noisy channel
ν. In other words, the response received by the chal-
lenger is a random variable Πν(i) over the space
{0, 1}k that models the effects of various types of
noise on the underlying value Π(i).

The POWF we consider has k = 2400 bits, al-
though this number would go down to 233 if some
form of entropy coding were used to compress a Ga-
bor Hash. As we saw above, the number of cells
(i.e., unique challenges) supported by any token is
n ≈ 1010 ≈ 234. We note that k may be increased
in practice by (a) reducing the noise in the system
through better engineering and (b) using a larger de-
tector. n can be increased by increasing the size L
of the structure, decreasing the mean free path l be-

27

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

-2.5 -1.25 0 1.25 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

linear translation from origin (mm)

H
am

m
in

g
di

st
an

ce

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

rotation about vertical axis (degrees)

Figure 6: The plot on the left shows the Hamming distance between a reference key obtained from a central
location and keys obtained as the laser is translated linearly across the surface of the token. A translation of
approximately 60 microns causes the key to decorrelate completely. Data obtained for angular sensitivity show
that a rotation of approximately 1.7 mrad causes full decorrelation of the key.

Figure 7: Demonstration of tamper resistance. The top
row shows a segment of the enrolled Gabor Hash (rep-
resented as two adjacent binary images for ease of vi-
sualization), the middle row shows the same segment
from the hash of an intentionally damaged token, and
the bottom row shows the XOR of the previous two
rows. The Hamming Distance between the top two
rows is 0.46.

tween scatterers up to a limit equal to the wavelength
of probe radiation, decreasing the wavelength λ of
the probe radiation, and engineering higher precision
probe positioning systems. One final point to note is
that, from an economic point of view, increasing the
size of the structure or decreasing the mean free path
adds very little cost, if any, to the system.

7 Attacks

POWFs, as described here, may be used in an au-
thentication protocol as described in Figure 8. The
protocol is based on generating challenge-response
pairs on secure terminals and consuming them on un-
secure terminals. During the enrollment stage, several
challenge-response pairs (denoted by (θ, k)) are ac-
quired at a trusted terminal. During the verification
stage of the protocol, the server challenges the token
with a specific θi and compares the noisy response k′

i

with the known ki. The token is authenticated if the
Hamming distance between k′

i and ki is below a pre-
viously set threshold T . The challenge-response pair

28

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

(θi, ki), grayed out in Figure 8, is not reused in any
future transactions. As we saw earlier, the number of
challenges per token is ≈ 234. Given that up to 41%
of the bits can be incorrect before we reject a spoofed
Gabor Hash as having not originated in the same to-
ken, the probability that an attacker can guess the cor-
responding response is 2−233∗0.59 ≈ 2−137.

An attack on a POWF-based authentication system
is successful if an attacker can demonstrate posses-
sion of the POWF without actually having physical
access to the token. Stated more formally, we would
like to enumerate the subset of cells of a (k, n)-POWF
an attacker can spoof when challenged with queries
i ∈ {1, 2, . . . , n}. There are two classes of attacks
on POWFs - physical and computational - each of-
fering varying degrees of ease of spoofing to the at-
tacker. Physical attacks are of interest in environments
where the reader requires the presence of a 3D struc-
ture as part of the authentication process while com-
putational attacks are relevant in scenarios where the
Gabor Hashes, rather than the 3D structure itself, are
used.

7.1 Physical attacks

These attacks involve creating a physical structure
that emulates all or part of a (k, n)-POWF. The spec-
trum of attacks ranges from a static image that spoofs
a single cell to holograms that spoof a small subset
of cells to cloning the entire structure down to the
scale of λ. The former attack may be thwarted by
using the POWF in a challenge-response protocol as
described in Figure 8. The holographic attack is prac-
tically infeasible owing to limitations in the ability of
holographic film to store and reproduce a large num-
ber of images with no crosstalk [16]. The most dif-
ficult attack of all is the cloning attack. The princi-
pal difference between that holographic attack and the
cloning attack is that the hologram aims to emulate
the optical behavior of the 3D microstructure without
actually creating a replica of the structure itself. The
state of the art in 3D microfacrication is far behind

the difficulty presented by a macroscopic 3D structure
with λ-scale inhomogeneities [18]. This difficulty is
further enhanced because probe samples not just the
token’s physical structure but also its material proper-
ties (e.g. dielectric constant) of the medium as well as
those of the scatterers. This implies that in order for
a cloning attack to succeed, it would have to not only
recreate the structure but also its local electromagnetic
attributes. Given the fact that 3D microfabrication is
currently possible with only a small library of materi-
als, it appears that a full-fledged cloning attack is in-
feasible using know 3D microfacrication technology.
Finally, we remark that spoofing a single token does
not affect the integrity of any other token.

7.2 Computational attacks

This class of attacks involves spoofing the (k, n)-
POWF computationally. The simplest of these attacks
is a replay attack - observe and store all possible chal-
lenges and corresponding responses for replay later.
This attack is the most feasible of all and involves stor-
age of a large amount of data. For a spoofing success
probability of 100%, our (2400, ∼ 1010)-POWF re-
quires storing 2400× 234 bits ≈ 245 bits i.e., about 32
terabytes of data, which is not infeasible, but it is ex-
pensive. If the attacker were satisfied with a lower suc-
cess rate, the storage requirements would decrease ac-
cordingly. This decrease in storage could be offset by
requiring the verifying server to challenge the prover
multiple times. Storage requirements drop to about 4
terabytes if the Gabor Hashes were compressed to 233
bits. Further, assuming a 10 ms acquisition time per
response, it would take an attacker over 3 years to ac-
quire responses to all possible challenges. Note that
the verifier’s database can be much smaller because it
can select the subset of challenge-response pairs that
it wants to query on in advance.

A second attack would be simulate the response to
any given challenge. Assume that the volume of the
token is 1 cm3 and it is probed by light with a wave-

29

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

Figure 8: A challenge-response authentication protocol

length on the order of 1 µm, then its structure is spec-
ified by up to (10−2/10−6)3 = 1012 ≈ 240 bits if the
composition of each cubic block of wavelength size
is random, as it would be for microscopically inho-
mogeneous scatterers. These bits could be used to
computationally simulate the output instead of stor-
ing all possible outputs in advance. In the mesoscopic
limit, a photon passing through the structure performs
a random walk with a step size given by the mean
free path l, covering a distance l

√
N after N scatter-

ing events [23]. For the photon to emerge from the
thickness L of the token requires that L = l

√
N and

so N = (L/l)2 scattering events. At each of these
steps, in a simulation it is necessary to propagate for-
ward paths linking all pairs of scatterers, giving an to-
tal of ∼ 1012 × 1012 × 102 = 1026 ≈ 286 scatter-
ing simulations per scattering event. In our embodi-
ment, N = 625 scattering events. In practice, sim-
ulating the scattering from even a single arbitrarily-
shaped particle in the limit that its dimension is sev-
eral times the wavelength presently requires a super-
computer [15]. Although simulating the response to

any arbitrary challenge is not provably difficult, it does
require complete knowledge of local structural and
electromagnetic properties of the microstructure at the
scale of λ and access to extremely high-performance
computing. This presents a substantial challenge to
any attacker.

Successfully spoofing a POWF involves technical
measures, effort and expense which are extremely dis-
proportional to the effort and expense of creating the
POWF. This physical asymmetry is akin to the compu-
tational asymmetry encountered in cryptographic one-
way functions.

8 Discussion

POWFs are expected to find utility in physical au-
thentication systems where challenge-response proto-
cols are employed. A typical application could be in
access control, where the number of tokens is small
and the data system employed usually relies on a

30

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

trusted central computer to keep track of the chal-
lenges and responses. Another potential application
is in arms control treaty verification. Unlike more
familiar challenge-response protocols, this one relies
on the enormous amount of information that is com-
mitted in advance to the token that is read out over
a long period. Beyond this, applications exist in
tamper resistant packaging either as externally mon-
itored free-standing structures or through the use of
self-contained packages containing a laser, a detec-
tor which are potted in optical epoxy containing in-
homogeneities. It is also worth noting that POWFs
can be built at any wavelegth as long as the system is
in the mesoscopic regime. Speckle patterns have been
observed mesoscopic all-electronic systems by using
the scattering of electrons from atomic-scale inhomo-
geneities [14]. Although the temperature at which
these effects are observed is too low to be practically
used, this line of thinking opens up new approaches to
uniquely identifying electronic structures based solely
on their physical structures. One area where this kind
of identification is becoming increasingly important is
in assigning identity to silicon chips. Recent work in
silicon POWFs, Physical Unknown Functions (PUFs)
and Physical Random Functions (PRFs) [3, 12] points
to interesting opportunities in using the actual physi-
cal structure of silicon chips for identification, certi-
fied execution, and digital rights management.

We have shown how coherent multiple scattering
in inexpensive 3D structures performs a mapping that
satisfies all of the attributes of a physical source of
data with properties akin to those of a noisy random
oracle [17]. The value of POWFs lie in the fact that
they, unlike prior physical authentication methods,
makes an explicit connection with the framework of
modern cryptography and thus may be viewed as an-
other primitive in the cryptographer’s toolbox, albeit
one that has a physical manifestation. In cases where
cryptographic authentication is neither economically
nor practically feasible, POWFs offer an alternative
approach.

Acknowledgements

The author thanks Ari Juels for several insightful
discussions. Markus Jakobsson, Burt Kaliski, and Ari
Juels also provided a large number of comments dur-
ing review which greatly improved the content and
readability of this article.

References

[1] C. Bennet, G. Brassard, S. Breidbard, and
S. Wiesner. Quantum cryptography, or unforge-
able subway tokens. In Proceedings of Crypto
’82, pages 267–275, 1982.

[2] R. Berkovits. Sensitivity of the multiple-
scattering speckle pattern to the motion of a sin-
gle scatterer. Physical Review B, 43:8638–40,
1991.

[3] D. Clarke, B. Gassend, M. van Dijk, and S. De-
vadas. Secure hardware processors using silicon
physical one-way functions. In R. Sandu, editor,
ACM CCS ’02, 2002.

[4] D. Collon. First Impressions: Cylinder seals in
the Ancient Near East. British Museum, London,
1987.

[5] Thomas M. Cover and Joy A. Thomas. Elements
of Information Theory. Wiley, New York, 1991.

[6] J. G. Daugman. Uncertainty relation for space,
spatial frequency, and orientation optimized by
two dimensional visual cortical filters. Journal of
the Optical Society of America, 2:1160–9, 1985.

[7] S. Feng, C. Kane, P.A. Lee, and A.D. Stone. Cor-
relations and fluctuations of coherent wave trans-
mission through disordered media. Physical Re-
view Letters, 61:834–7, 1988.

[8] S. Feng and P.A. Lee. Mesoscopic conductors
and correlations in laser speckle patterns. Sci-
ence, 251:633–9, 1991.

31

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

[9] Steve Fetter and Thomas Garwin. Using tags to
moniitor numerical limits in arms control agree-
ments. In Barry M. Blechman, editor, Technol-
ogy and the Limitation of International Conflict,
pages 33–54, Washington, DC, 1989. The John’s
Hopkins Foreign Policy Institute.

[10] Steve Fetter and Thomas Garwin. Tags. In
Richard Kokoski and Sergey Koulik, editors,
Verification of Conventional Arms Control In Eu-
rope: Technological Constraints and Opportuni-
ties, pages 139–154, Boulder, CO, 1990. West-
view Press.

[11] D. Gabor. Theory of communication. Journal
of the Institute of Electrical Engineers, 93:429–
457, 1946.

[12] B. Gassend. Physical random functions. Mas-
ter’s thesis, Massachusetts Institute of Technol-
ogy, 2003.

[13] J.W. Goodman. Statistical properties of laser
speckle patterns. In J.C. Dainty, editor, Laser
Speckle and Related Phenomena, pages 9–75,
Berlin, 1975. Springer-Verlag.

[14] D. Hoadley, P. McConville, O. Norman, and
N.O. Birge. Experimental comparison of the
phase-breaking lengths in weak localization and
universal conductance fluctuations. Physical Re-
view B, 60:5617–25, 1999.

[15] A.G. Hoekstra, M.D. Grimminck, and P.M.A.
Sloot. Large scale simulations of elastic light
scattering by a fast discrete dipole adapproxima-
tion. International Journal of Modern Physics
C, 9:87–102, 1998.

[16] K.M. Johnson, L. Hesselink, and J.W. Goodman.
Holographic reciprocity law failure. Appl. Op-
tics, 23:218–227, 1984.

[17] A. Juels and R. Pappu. Physical random oracles,
2003. manuscript in preparation.

[18] C. Marxer and N.E. de Rooij. Silicon microme-
chanics for the fiber-optic information highway.
Sensors and Materials, 10:351–62, 1998.

[19] O. Nestares, R. Navarro, J. Portilla, and
A. Tabernero. Efficient spatial-domain imple-
mentation of a multiscale image representation
based on gabor functions. Journal of Electronic
Imaging, 7:166–73, 1998.

[20] R. Pappu. Physical One-Way Functions. PhD
thesis, Massachusetts Institute of Technology,
2003.

[21] R. Pappu, B. Recht, J. Taylor, and N. Gershen-
feld. Physical one-way functions. Science,
297:2026–2030, 2002.

[22] M.C.W. van Rossum and Th.M. Nieuwenhuizen.
Multiple scattering of classical waves: Mi-
croscopy, mesoscopy, and diffusion. Reviews of
Modern Physics, 71:313–371, 1999.

[23] Bart van Tiggelen. Multiple Scattering and Lo-
calization of Light. PhD thesis, University of
Amsterdam, 1992.

[24] W. K. Wootters and W. Zurek. A single quantum
cannot be cloned. Nature, 299:982–83, 1982.

[25] J. Yoshida. Euro bank notes to em-
bed RFID chips by 2005. EE Times.
19 December 2001. Available at
www.eetimes.com/story/OEG20011219S0016.

32

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

RSA Laboratories Cryptobytes
Volume 6, No.2 — Summer 2003

A B O U T R S A L A B O R A T O R I E S

An academic environment within a commercial organization,
RSA Laboratories is the research center of RSA Security Inc.,
the company founded by the inventors of the RSA public-key
cryptosystem. Through its research program, standards devel-
opment, and educational activities, RSA Laboratories provides
state-of-the-art expertise in cryptography and security technol-
ogy for the benefit of RSA Security and its customers.

Please see www.rsasecurity.com/rsalabs for more information.

N E W S L E T T E R A V A I L A B I L I T Y A N D

C O N T A C T I N F O R M A T I O N

CryptoBytes is a free publication and all issues, both current
and previous, are available at www.rsasecurity.com/rsalabs/
cryptobytes. While print copies may occasionally be distrib-
uted, publication is primarily electronic.

For more information, please contact:

cryptobytes-editor@rsasecurity.com.

©2003 RSA Security Inc. All rights reserved.

RSA and RSA Security are registered trademarks of RSA Security Inc. All other trademarks are the

property of their respective owners.

CRYPTOBYTES VOLUME 6, NO. 2, 2003

