
RSA Hardware Implementation

C�etin Kaya Ko�c

Koc@ece.orst.edu

RSA Laboratories

RSA Data Security, Inc.

100 Marine Parkway, Suite 500

Redwood City, CA 94065-1031

Copyright c
 RSA Laboratories

Version 1.0 { August 1995

Contents

1 RSA Algorithm 1

2 Computation of Modular Exponentiation 2

3 RSA Operations and Parameters 3

4 Modular Exponentiation Operation 3

5 Addition Operation 5

5.1 Full-Adder and Half-Adder Cells . 5
5.2 Carry Propagate Adder . 7
5.3 Carry Completion Sensing Adder . 7
5.4 Carry Look-Ahead Adder . 9
5.5 Carry Save Adder . 10
5.6 Carry Delayed Adder . 12

6 Modular Addition Operation 13

6.1 Omura's Method . 14

7 Modular Multiplication Operation 15

7.1 Interleaving Multiplication and Reduction 16
7.2 Utilization of Carry Save Adders . 17
7.3 Brickell's Method . 21
7.4 Montgomery's Method . 22
7.5 High-Radix Interleaving Method . 24
7.6 High-Radix Montgomery's Method . 24

References 26

i

1 RSA Algorithm

The RSA algorithm, invented by Rivest, Shamir, and Adleman [25], is one of the simplest
public-key cryptosystems. The parameters are n, p and q, e, and d. The modulus n is the
product of the distinct large random primes: n = pq. The public exponent e is a number in
the range 1 < e < �(n) such that

gcd(e; �(n)) = 1 ,

where �(n) is Euler's totient function of n, given by

�(n) = (p� 1)(q � 1) .

The private exponent d is obtained by inverting e modulo �(n), i.e.,

d = e�1 mod �(n) ,

using the extended Euclidean algorithm [11, 21]. Usually one selects a small public exponent,
e.g., e = 216 + 1. The encryption operation is performed by computing

C =M e (mod n) ,

where M is the plaintext such that 0 � M < n. The number C is the ciphertext from which
the plaintext M can be computed using

M = Cd (mod n) .

As an example, let p = 11 and q = 13. We compute n = pq = 11 � 13 = 143 and

�(n) = (p� 1)(q � 1) = 10 � 12 = 120 .

The public exponent e is selected such that 1 < e < �(n) and

gcd(e; �(n)) = gcd(e; 120) = 1 .

For example, e = 17 would satisfy this constraint. The private exponent d is obtained by
inverting e modulo �(n) as

d = 17�1 (mod 120)

= 113 ,

which can be computed using the extended Euclidean algorithm. The user publishes the
public exponent and the modulus: (e; n) = (13; 143), and keeps the following private: d =
113, p = 11, q = 13. Let M = 50 be the plaintext. It is encrypted by computing C = M e

(mod n) as

C = 5017 (mod 143)

= 85 .

1

The ciphertext C = 85 is decrypted by computing M = Cd (mod n) as

M = 85113 (mod 143)

= 50 .

The RSA algorithm can be used to send encrypted messages and to produce digital signa-
tures for electronic documents. It provides a procedure for signing a digital document, and
verifying whether the signature is indeed authentic. The signing of a digital document is
somewhat di�erent from signing a paper document, where the same signature is being pro-
duced for all paper documents. A digital signature cannot be a constant; it is a function of
the digital document for which it was produced. After the signature (which is just another
piece of digital data) of a digital document is obtained, it is attached to the document for
anyone wishing the verify the authenticity of the document and the signature. We refer the
reader to the technical reports Answers to Frequently Asked Questions About Today's Cryptog-

raphy and Public Key Cryptography Standards published by the RSA Laboratories [26, 27] for
answers to certain questions on these issues.

2 Computation of Modular Exponentiation

Once the modulus and the private and public exponents are determined, the senders and re-
cipients perform a single operation for signing, veri�cation, encryption, and decryption. The
operation required is the computation of M e (mod n), i.e., the modular exponentiation.
The modular exponentiation operation is a common operation for scrambling; it is used
in several cryptosystems. For example, the Di�e-Hellman key exchange scheme requires
modular exponentiation [6]. Furthermore, the ElGamal signature scheme [7] and the Digital
Signature Standard (DSS) of the National Institute for Standards and Technology [22] also
require the computation of modular exponentiation. However, we note that the exponentia-
tion process in a cryptosystem based on the discrete logarithm problem is slightly di�erent:
The base (M) and the modulus (n) are known in advance. This allows some precomputation
since powers of the base can be precomputed and saved [5]. In the exponentiation process
for the RSA algorithm, we know the exponent (e) and the modulus (n) in advance but not
the base (M); thus, such optimizations are not likely to be applicable.

In the following sections we will review techniques for implementation of the modular
exponentiation operation in hardware. We will study techniques for exponentiation, modular
multiplication, modular addition, and addition operations. We intend to cover mathematical
and algorithmic aspects of the modular exponentiation operation, providing the necessary
knowledge to the hardware designer who is interested implementing the RSA algorithm using
a particular technology. We draw our material from computer arithmetic books [32, 10, 34,
17], collection of articles [31, 30], and journal and conference articles on hardware structures
for performing the modular multiplication and exponentiations [24, 16, 28, 9, 4, 13, 14, 15, 33].
For implementing the RSA algorithm in software, we refer the reader to the companion report
High-Speed RSA Implementation published by the RSA Laboratories [12].

2

3 RSA Operations and Parameters

The RSA algorithm requires computation of the modular exponentiation which is broken into
a series of modular multiplications by the application of exponentiation heuristics. Before
getting into the details of these operations, we make the following de�nitions:

� The public modulus n is a k-bit positive integer, ranging from 512 to 2048 bits.

� The secret primes p and q are approximately k=2 bits.

� The public exponent e is an h-bit positive integer. The size of e is small, usually not
more than 32 bits. The smallest possible value of e is 3.

� The secret exponent d is a large number; it may be as large as �(n)�1. We will assume
that d is a k-bit positive integer.

After these de�nitions, we will study algorithms for modular exponentiation, exponentia-
tion, modular multiplication, multiplication, modular addition, addition, and subtraction
operations on large integers.

4 Modular Exponentiation Operation

The modular exponentiation operation is simply an exponentiation operation where mul-
tiplication and squaring operations are modular operations. The exponentiation heuristics
developed for computingM e are applicable for computingM e (mod n). In the companion
report [12], we review several techniques for the exponentiation operation. In the domain of
hardware implementation, we will mention a couple of details, and refer the reader to the
companion report [12] for more information on exponentiation heuristics.

The binary method for computing M e (mod n) given the integers M , e, and n has two
variations depending on the direction by which the bits of e are scanned: Left-to-Right (LR)
and Right-to-Left (RL). The LR binary method is more widely known:

LR Binary Method

Input: M; e; n
Output: C :=M e mod n
1. if eh�1 = 1 then C :=M else C := 1
2. for i = h� 2 downto 0
2a. C := C � C (mod n)
2b. if ei = 1 then C := C �M (mod n)
3. return C

The bits of e are scanned from the most signi�cant to the least signi�cant, and a modular
squaring is performed for each bit. A modular multiplication operation is performed only if
the bit is 1. An example of LR binary method is illustrated below for h = 6 and e = 55 =
(110111). Since e5 = 1, the LR algorithm starts with C :=M , and proceeds as

3

i ei Step 2a (C) Step 2b (C)
4 1 (M)2 =M2 M2 �M =M3

3 0 (M3)2 =M6 M6

2 1 (M6)2 =M12 M12 �M =M13

1 1 (M13)2 =M26 M26 �M =M27

0 1 (M27)2 =M54 M54 �M =M55

The RL binary algorithm, on the other hand, scans the bits of e from the least signi�cant
to the most signi�cant, and uses an auxiliary variable P to keep the powers M .

RL Binary Method

Input: M; e; n
Output: C :=M e mod n
1. C := 1 ; P :=M
2. for i = 0 to h� 2
2a. if ei = 1 then C := C � P (mod n)
2b. P := P � P (mod n)
3. if eh�1 = 1 then C := C � P (mod n)
4. return C

The RL algorithm starts with C =: 1 and P :=M , proceeds to compute M55 as follows:

i ei Step 2a (C) Step 2b (P)
0 1 1 �M =M (M)2 =M2

1 1 M �M2 =M3 (M2)2 =M4

2 1 M3 �M4 =M7 (M4)2 =M8

3 0 M7 (M8)2 =M16

4 1 M7 �M16 =M23 (M16)2 =M32

Step 3: e5 = 1, thus C :=M23 �M32 =M55

We compare the LR and RL algorithm in terms of time and space requirements below:

� Both methods require h� 1 squarings and an average of 1
2
(h� 1) multiplications.

� The LR binary method requires two registers: M and C.

� The RL binary method requires three registers: M , C, and P . However, we note that
P can be used in place of M , if the value of M is not needed thereafter.

� The multiplication (Step 2a) and squaring (Step 2b) operations in the RL binary
method are independent of one another, and thus these steps can be parallelized.
Provided that we have two multipliers (one multiplier and one squarer) available, the
running time of the RL binary method is bounded by the total time required for
computing h� 1 squaring operations on k-bit integers.

4

The advanced exponentiation algorithms are often based on word-level scanning of the
digits of the exponent e. As mentioned, the companion technical report [12] contains several
advanced algorithms for computing the modular exponentiation, which are slightly faster
than the binary method. The word-level algorithms, i.e., the m-ary methods, require some
space to keep precomputed powers of M in order to reduce the running time. These al-
gorithms may not be very suitable for hardware implementation since the space on-chip is
already limited due to the large size of operands involved (e.g., 1024 bits). Thus, we will not
study these techniques in this report.

The remainder of this report reviews algorithms for computing the basic modular arith-
metic operations, namely, the addition, subtraction, and multiplication. We will assume that
the underlying exponentiation heuristic is either the binary method, or any of the advanced
m-ary algorithm with the necessary register space already made available. This assump-
tion allows us to concentrate on developing time and area e�cient algorithms for the basic
modular arithmetic operations, which is the current challenge because of the operand size.

The literature is replete with residue arithmetic techniques applied to signal processing,
see for example, the collection of papers in [30]. However, in such applications, the size
of operands are very small, usually around 5{10 bits, allowing table lookup approaches.
Besides the moduli are �xed and known in advance, which is de�nitely not the case for
our application. Thus, entirely new set of approaches are needed to design time and area
e�cient hardware structures for performing modular arithmetic operations to be used in
cryptographic applications.

5 Addition Operation

In this section, we study algorithms for computing the sum of two k-bit integers A and B.
Let Ai and Bi for i = 1; 2; : : : ; k� 1 represent the bits of the integers A and B, respectively.
We would like to compute the sum bits Si for i = 1; 2; : : : ; k � 1 and the �nal carry-out Ck

as follows:

Ak�1 Ak�2 � � � A1 A0

+ Bk�1 Bk�2 � � � B1 B0

Ck Sk�1 Sk�2 � � � S1 S0

We will study the following algorithms: the carry propagate adder (CPA), the carry comple-
tion sensing adder (CCSA), the carry look-ahead adder (CLA), the carry save adder (CSA),
and the carry delayed adder (CDA) for computing the sum and the �nal carry-out.

5.1 Full-Adder and Half-Adder Cells

The building blocks of these adders are the full-adder (FA) and half-adder (HA) cells. Thus,
we brie
y introduce them here. A full-adder is a combinational circuit with 3 input and 2
outputs. The inputs Ai, Bi, Ci and the outputs Si and Ci+1 are boolean variables. It is
assumed that Ai and Bi are the ith bits of the integers A and B, respectively, and Ci is

5

the carry bit received by the ith position. The FA cell computes the sum bit Si and the
carry-out bit Ci+1 which is to be received by the next cell. The truth table of the FA cell is
as follows:

Ai Bi Ci Ci+1 Si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The boolean functions of the output values are as

Ci+1 = AiBi + AiCi +BiCi ,

Si = Ai � Bi � Ci .

Similarly, an half-adder is a combinational circuit with 2 inputs and 2 outputs. The inputs
Ai, Bi and the outputs Si and Ci+1 are boolean variables. It is assumed that Ai and Bi are
the ith bits of the integers A and B, respectively. The HA cell computes the sum bit Si and
the carry-out bit Ci+1. Thus, an half-adder is easily obtained by setting the third input bit
Ci to zero. The truth table of the HA cell is as follows:

Ai Bi Ci+1 Si
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The boolean functions of the output values are as Ci+1 = AiBi and Si = Ai�Bi, which can
be obtained by setting the carry bit input Ci of the FA cell to zero. The following �gure
illustrates the FA and HA cells.

FA

Ai Bi

Ci

Si

Ci+1
HA

Ci+1

Ai Bi

Si

Full-Adder Cell Half-Adder Cell

6

5.2 Carry Propagate Adder

The carry propagate adder is a linearly connected array of full-adder (FA) cells. The topology
of the CPA is illustrated below for k = 8.

FAFAFAFAFAFA
C4C5

C6 S4S5

A0A1A2A3A4A5 B0B1B2B3B4B5

S0

C0C1

S1

C2

S2

C3

S3

The total delay of the carry propagate adder is k times the delay of a single full-adder
cell. This is because the ith cell needs to receive the correct value of the carry-in bit Ci in
order to compute its correct outputs. Tracing back to the 0th cell, we conclude that a total
of k full-adder delays is needed to compute the sum vector S and the �nal carry-out Ck.
Furthermore, the total area of the k-bit CPA is equal to k times a single full-adder cell area.
The CPA scales up very easily, by adding additional cells starting from the most signi�cant.

The subtraction operation can be performed on a carry propagate adder by using 2's
complement arithmetic. Assuming we have a k-bit CPA available, we encode the positive
numbers in the range [0; 2k�1�1] as k-bit binary vectors with the most signi�cant bit being 0.
A negative number is then represented with its most signi�cant bit as 1. This is accomplished
as follows: Let x 2 [0; 2k�1], then �x is represented by computing 2k � x. For example, for
k = 3, the positive numbers are 0; 1; 2; 3 encoded as 000; 001; 010; 011, respectively. The
negative 1 is computed as 23� 1 = 8� 1 = 7 = 111. Similarly, �2, �3, and �4 are encoded
as 110, 101, and 100, respectively. This encoding system has two advantages which are
relevant in performing modular arithmetic operations:

� The sign detection is easy: the most signi�cant bit gives the sign.

� The subtraction is easy: In order to compute x � y, we �rst represent �y using 2's
complement encoding, and then add x to �y.

The CPA has several advantages but one clear disadvantage: the computation time is too
long for our application, in which the operand size is in the order of several hundreds, up
to 2048 bits. Thus, we need to explore other techniques with the hope of building circuits
which require less time without signi�cantly increasing the area.

5.3 Carry Completion Sensing Adder

The carry completion sensing adder is an asynchronous circuit with area requirement pro-
portional to k. It is based on the observation that the average time required for the carry

7

propagation process to complete is much less than the worst case which is k full-adder de-
lays. For example, the addition of 15213 by 19989 produces the longest carry length as 5, as
shown below:

0 0 1 1 1 0 1 1 0 1 1 0 1 1 0A

0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1

1

4 1 15

B

=

=

A statistical analysis shows that the average longest carry sequence is approximately 4.6 for
a 40-bit adder [8]. In general, the average longest carry produced by the addition of two
k-bit integers is upper bounded by log2 k. Thus, we can design a circuit which detects the
completion of all carry propagation processes, and completes in log2 k time in the average.

0 1 1 1 0 1 1 0 1 1 0 1 1 0 1A

1 0 0 1 1 1 0 0 0 0 1 0 1 0 1B

C
N

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

C

C

C

C

C

N

N

N

N

N

1
0

0
1

1
0

1
0

1
0

0
1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

In order to accomplish this task, we introduce a new variable N in addition to the carry
variable C. The value of C and N for ith position is computed using the values of A and B
for the ith position, and the previous C and N values, as follows:

(Ai; Bi) = (0; 0) =) (Ci; Ni) = (0; 1)

(Ai; Bi) = (1; 1) =) (Ci; Ni) = (1; 0)

(Ai; Bi) = (0; 1) =) (Ci; Ni) = (Ci�1; Ni�1)

(Ai; Bi) = (1; 0) =) (Ci; Ni) = (Ci�1; Ni�1)

8

Initially, the C and N vectors are set to zero. The cells which produce C and N values start
working as soon as the values of A and B are applied to them in parallel. The output of a cell
(Ci; Ni) settles when its inputs (Ci�1; Ni�1) are settled. When all carry propagation processes
are complete, we have either (Ci; Ni) = (0; 1) or (Ci; Ni) = (1; 0) for all i = 1; 2; : : : ; k. Thus,
the end of carry completion is detected when all Xi = Ci + Ni = 1 for all i = 1; 2; : : : ; k,
which can be accomplished by using a k-input AND gate.

5.4 Carry Look-Ahead Adder

The carry look-ahead adder is based on computing the carry bits Ci prior to the summation.
The carry look-ahead logic makes use of the relationship between the carry bits Ci and the
input bits Ai and Bi. We de�ne two variables Gi and Pi, named as the generate and the
propagate functions, as follows:

Gi = AiBi ,

Pi = Ai +Bi .

Then, we expand C1 in terms of G0 and P0, and the input carry C0 as

C1 = A0B0 + C0(A0 +B0) = G0 + C0P0 .

Similarly, C2 is expanded in terms G1, P1, and C1 as

C1 = G1 + C1P1 .

When we substitute C1 in the above equation with the value of C1 in the preceding equation,
we obtain C1 in terms G0, G1, P0, P1, and C0 as

C1 = G1 + C1P1 = G1 + (G0 + C0P0)P1 = G1 +G0P1 + C0P0P1 .

Proceeding in this fashion, we can obtain Ci as function of C0 and G0; G1; : : : ; Gi and
P0; P1; : : : ; Pi. The carry functions up to C4 are given below:

C1 = G0 + C0P0 ,

C2 = G1 +G0P1 + C0P0P1 ,

C3 = G2 +G1P2 +G0P1P2 + C0P0P1P2 ,

C4 = G3 +G2P3 +G1P2P3 +G0P1P2P3 + C0P0P1P2P3 .

The carry look-ahead logic uses these functions in order to compute all Cis in advance, and
then feeds these values to an array of EXOR gates to compute the sum vector S. The ithe
element of the sum vector is computed using

Si = Ai �Bi � Ci .

The carry look-ahead adder for k = 3 is illustrated below.

9

C4

A0A1A2A3 B0B1B2B3

Carry Look-Ahead Logic C0

S0

B0

C0

A0

C1

S1

A1

B1

C2

S2

A2

B2

C3

S3

A3

B3

The CLA does not scale up very easily. In order to deal with large operands, we have
basically two approaches:

� The block carry look-ahead adder: First we build small (4-bit or 8-bit) carry look-
ahead logic cells with section generate and propagate functions, and then stack these
to build larger carry look-ahead adders [10, 34, 17].

� The complete carry look-ahead adder: We build a complete carry look-ahead logic for
the given operand size. In order to accomplish this task, the carry look-ahead functions
are formulated in a way to allow the use of the parallel pre�x circuits [2, 18, 19].

The total delay of the carry look-ahead adder is O(log k) which can be signi�cantly less than
the carry propagate adder. There is a penalty paid for this gain: The area increases. The
block carry look-ahead adders require O(k log k) area, while the complete carry look-ahead
adders require O(k) area by making use of e�cient parallel pre�x circuits [19, 20]. It seems
that a carry look-ahead adder larger than 256 bits is not cost e�ective, considering the fact
there are better alternatives, e.g., the carry save adders. Even by employing block carry
look-ahead approaches, a carry look-ahead adder with 1024 bits seems not feasible or cost
e�ective.

5.5 Carry Save Adder

The carry save adder seems to be the most useful adder for our application. It is simply a
parallel ensemble of k full-adders without any horizontal connection. Its main function is to
add three k-bit integers A, B, and C to produce two integers C 0 and S such that

C 0 + S = A+B + C .

As an example, let A = 40, B = 25, and C = 20, we compute S and C 0 as shown below:

10

A = 40 = 1 0 1 0 0 0
B = 25 = 0 1 1 0 0 1
C = 20 = 0 1 0 1 0 0
S = 37 = 1 0 0 1 0 1
C 0 = 48 = 0 1 1 0 0 0

The ith bit of the sum Si and the (i + 1)st bit of the carry C 0

i+1 is calculated using the
equations

Si = Ai � Bi � Ci .

C 0

i+1 = AiBi + AiCi +BiCi ,

in other words, a carry save adder cell is just a full-adder cell. A carry save adder, sometimes
named a one-level CSA, is illustrated below for k = 6.

FA

C5

C’6 S5

A5 B5

FA

C4

C’5 S4

A4 B4

FA

C3

C’4 S3

A3 B3

FA

C2

C’3 S2

A2 B2

FA

C1

C’2 S1

A1 B1

FA

C0

C’1 S0

A0 B0

Since the input vectors A, B, and C are applied in parallel, the total delay of a carry save
adder is equal to the total delay of a single FA cell. Thus, the addition of three integers
to compute two integers requires a single FA delay. Furthermore, the CSA requires only
k times the areas of FA cell, and scales up very easily by adding more parallel cells. The
subtraction operation can also be performed by using 2's complement encoding. There are
basically two disadvantages of the carry save adders:

� It does not really solve our problem of adding two integers and producing a single
output. Instead, it adds three integers and produces two such that sum of these two
is equal to the sum of three inputs. This method may not be suitable for application
which only needs the regular addition.

� The sign detection is hard: When a number is represented as a carry-save pair (C; S)
such that its actual value is C + S, we may not know the exact sign of total sum
C + S. Unless the addition is performed in full length, the correct sign may never be
determined.

We will explore this sign detection problem in an upcoming section in more detail. For now,
it su�ces to brie
y mention the sign detection problem, and introduce a method of sign
detection. This method is based on adding a few of the most signi�cant bits of C and S in

11

order to calculate (estimate) the sign. As an example, let A = �18, B = 19, C = 6. After
the carry save addition process, we produce S = �5 and C 0 = 12, as shown below. Since the
total sum C 0 + S = 12� 5 = 7, its correct sign is 0. However, when we add the �rst most
signi�cant bits, we estimate the sign incorrectly.

A = �18 = 1 0 1 1 1 0
B = 19 = 0 1 0 0 1 1
C = 6 = 0 0 0 1 1 0
S = �5 = 1 1 1 0 1 1
C 0 = 12 = 0 0 0 1 1 0

1 (1 MSB)
1 1 (2 MSB)
0 0 0 (3 MSB)
0 0 0 1 (4 MSB)
0 0 0 1 1 (5 MSB)
0 0 0 1 1 1 (6 MSB)

The correct sign is computed only after adding the �rst three most signi�cant bits. In the
worst case, up to a full length addition may be required to calculate the correct sign.

5.6 Carry Delayed Adder

The carry delayed adder is a two-level carry save adder. As we will see in Section 7.3, a certain
property of the carry delayed adder can be used to reduce the multiplication complexity. The
carry delayed adder produced a pair of integers (D; T), called a carry delayed number, using
the following set of equations:

Si = Ai �Bi � Ci ,

Ci+1 = AiBi + AiCi +BiCi ,

Ti = Si � Ci ,

Di+1 = SiCi ,

where D0 = 0. Notice that Ci+1 and Si are the outputs of a full-adder cell with inputs Ai,
Bi, and Ci, while the values Di+1 and Ti are the outputs of an half-adder cell.

An important property of the carry delayed adder is that Di+1Ti = 0 for all i =
0; 1; : : : ; k � 1. This is easily veri�ed as

Di+1Ti = SiCi(Si � Ci) = SiCi(�SiCi + Si �Ci) = 0 .

As an example, let A = 40, B = 25, and C = 20. In the �rst level, we compute the carry
save pair (C; S) using the carry save equations. In the second level, we compute the carry
delayed pair (D; T) using the de�nitions Di+1 = SiCi and Ti = Si � Ci as

12

A = 40 = 1 0 1 0 0 0
B = 25 = 0 1 1 0 0 1
C = 20 = 0 1 0 1 0 0
S = 37 = 1 0 0 1 0 1
C = 48 = 0 1 1 0 0 0 0
T = 21 = 0 1 0 1 0 1
D = 64 = 1 0 0 0 0 0 0

Thus, the carry delayed pair (64; 21) represents the total of A+B + C = 85. The property
of the carry delayed pair that TiDi+1 = 0 for all i = 0; 1; : : : ; k � 1 also holds.

T = 21 = 0 1 0 1 0 1
D = 64 = 1 0 0 0 0 0 0
TiDi+1 = 0 0 0 0 0 0

We will explore this property in Section 7.3 to design an e�cient modular multiplier which
was introduced by Brickell [3]. The following �gure illustrates the carry delayed adder for
k = 6.

FA

C5A5 B5

FA

C4A4 B4

FA

C3A3 B3

FA

C2A2 B2

FA

C1

S1

A1 B1

FA

C0

C1 S0

A0 B0

HA

C0

HAHAHAHAHA

T0T1 D1T2T3T4T5 D2D3D4D5D6 D0 = 0

C2C3C4C5C6 S2S3S4S5

6 Modular Addition Operation

The modular addition problem is de�ned as the computation of S = A + B (mod n)
given the integers A, B, and n. It is usually assumed that A and B are positive integers
with 0 � A;B < n, i.e., they are least positives residues. The most common method of
computing S is as follows:

1. First compute S 0 = A +B.

2. Then compute S 00 = S 0 � n.

3. If S 00 � 0, then S = S 0 else S = S 00.

13

Thus, in addition to the availability of a regular adder, we need fast sign detection which
is easy for the CPA, but somewhat harder for the CSA. However, when a CSA is used, the
�rst two steps of the above algorithm can be combined, in other words, S 0 = A + B and
S 00 = A + B � n can be computed at the same time. Then, we perform a sign detection to
decide whether to take S 0 or S 00 as the correct sum. We will review algorithms of this type
when we study modular multiplication algorithms.

6.1 Omura's Method

An e�cient method computing the modular addition, which especially useful for multi-
operand modular addition was proposed by Omura in [23]. Let n < 2k. This method allows
a temporary value to grow larger than n, however, it is always kept less than 2k. Whenever
it exceeds 2k, the carry-out is ignored and a correction is performed. The correction factor is
m = 2k�n, which is precomputed and saved in a register. Thus, Omura's method performs
the following steps given the integers A;B < 2k (but they can be larger than n).

1. First compute S 0 = A +B.

2. If there is a carry-out (of the kth bit), then S = S 0 +m, else S = S 0.

The correctness of Omura's algorithm follows from the observations that

� If there is no carry-out, then S = A + B is returned. The sum S is less than 2k, but
may be larger than n. In a future computation, it will be brought below n if necessary.

� If there is a carry-out, then we ignore the carry-out, which means we compute

S 0 = A+B � 2k .

The result, which needs to be reduced modulo n, is in e�ect reduced modulo 2k. We
correct the result by adding m back to it, and thus, compute

S = S 0 +m

= A+B � 2k +m

= A+B � 2k + 2k � n

= A+B � n .

After all additions are completed, a �nal result is reduced modulo n by using the standard
technique. As an example, let assume n = 39. Thus, we have m = 26� 39 = 25 = (011001).
The modular addition of A = 40 and B = 30 is performed using Omura's method as follows:

A = 40 = (101000)
B = 30 = (011110)
S 0 = A+B = 1(000110) Carry-out
m = (011001)
S = S 0 +m = (011111) Correction

14

Thus, we obtain the result as S = (011111) = 31 which is equal to 70 (mod 39) as required.
On the other hand, the addition of A = 23 by B = 26 is performed as

A = 23 = (010111)
B = 26 = (011010)
S 0 = A+B = 0(110001) No carry-out
S = S 0 = (110001)

This leaves the result as S = (110001) = 49 which is larger than the modulus 39. It will
be reduced in a further step of the multioperand modulo addition. After all additions are
completed, a �nal negative result can be corrected by adding m to it. For example, we
correct the above result S = (110001) as follows:

S = (110001)
m = (011001)
S = S +m = 1(001010)
S = (001010)

The result obtained is S = (001010) = 10, which is equal to 49 modulo 39, as required.

7 Modular Multiplication Operation

The modular multiplication problem is de�ned as the computation of P = AB (mod n)
given the integers A, B, and n. It is usually assumed that A and B are positive integers with
0 � A;B < n, i.e., they are the least positive residues. There are basically four approaches
for computing the product P .

� Multiply and then divide.

� The steps of the multiplication and reduction are interleaved.

� Brickell's method.

� Montgomery's method.

The multiply-and-divide method �rst multiplies A and B to obtain the 2k-bit number

P 0 := AB .

Then, the result P 0 is divided (reduced) by n to obtain the k-bit number

P := P 0 % n .

We will not study the multiply-and-divide method in detail since the interleaving method is
more suitable and also more e�cient for our problem. The multiply-and-divide method is
useful only when one needs the product P 0.

15

7.1 Interleaving Multiplication and Reduction

The interleaving algorithm has been known. The details of the method are sketched in
papers [1, 29]. Let Ai and Bi be the bits of the k-bit positive integers A and B, respectively.
The product P 0 can be written as

P 0 = A �B = A �
k�1X

i=0

Bi2
i =

k�1X

i=0

(A �Bi)2
i

= 2(� � � 2(2(0 + A �Bk�1) + A �Bk�2) + � � �) + A �B0

This formulation yields the shift-add multiplication algorithm. We also reduce the partial
product modulo n at each step:

1. P := 0
2. for i = 0 to k � 1
2a. P := 2P + A �Bk�1�i

2b. P := P mod n
3. return P

Assuming that A;B; P < n, we have

P := 2P + A �Bj

� 2(n� 1) + (n� 1) = 3n� 3 .

Thus, the new P will be in the range 0 � P � 3n�3, and at most 2 subtractions are needed
to reduce P to the range 0 � P < n. We can use the following algorithm to bring P back
to this range:

P 0 := P � n ; If P 0 � 0 then P = P 0

P 0 := P � n ; If P 0 � 0 then P = P 0

The computation of P requires k steps, at each step we perform the following operations:

� A left shift: 2P

� A partial product generation: A �Bj

� An addition: P := 2P + A �Bj

� At most 2 subtractions:

P 0 := P � n ; If P 0 � 0 then P = P 0

P 0 := P � n ; If P 0 � 0 then P = P 0

The left shift operation is easily performed by wiring. The partial products, on the other
hand, are generated using an array of AND gates. The most crucial operations are the
addition and subtraction operations: they need to be performed fast. We have the following
avenues to explore:

16

� We can use the carry propagate adder, introducing O(k) delay per step. However,
Omura's method can be used to avoid unnecessary subtractions:

2a. P := 2P
2b. If carry-out then P := P +m
2c. P := P + A �Bj

2d. If carry-out then P := P +m

� We can use the carry save adder, introducing only O(1) delay per step. However,
recall that the sign information is not immediately available in the CSA. We need to
perform fast sign detection in order to determine whether the partial product needs to
be reduced modulo n.

7.2 Utilization of Carry Save Adders

In order to utilize the carry save adders in performing the modular multiplication operations,
we represent the numbers as the carry save pairs (C; S), where the value of the number is
the sum C + S. The carry save adder method of the interleaving algorithm is given below:

1. (C; S) := (0; 0)
2. for i = 0 to k � 1
2a. (C; S) := 2C + 2S + A �Bk�1�i

2b. (C 0; S 0) := C + S � n
2c. if SIGN � 0 then (C; S) := (C 0; S 0)
3. return (C; S)

The function SIGN gives the sign of the carry save number C 0 + S 0. Since the exact sign
is available only when a full addition is performed, we calculate an estimated sign with the
SIGN function. A sign estimation algorithm was introduced in [15]. Here, we brie
y review
this algorithm, which is based on the addition o the most signi�cant t bits of C and S to
estimate the sign of C + S. For example, let C = (011110) and S = (001010), then the
function SIGN produces

C = 011110

S = 001010

(t = 1) SIGN = 0

(t = 2) SIGN = 01

(t = 3) SIGN = 100

(t = 4) SIGN = 1001

(t = 5) SIGN = 10100

(t = 6) SIGN = 101000 .

In the worst case the exact sign is produced after adding all k bits. If the exact sign of
C + S is computed, we can obtain the result of the multiplication operation in the correct

17

range [0; N). If an estimation of the sign is used, then we will prove that the range of the
result becomes [0; N+�), where � depends on the precision of the estimation. Furthermore,
since the sign is used to decide whether some multiple of N should be subtracted from the
partial product, an error in the decision causes only an error of a multiple of N in the partial
product, which is corrected later. We de�ne function T (X) on an n-bit integer X as

T (X) = X � (X mod 2t) ,

where 0 � t � n� 1. In other words, T replaces the �rst least signi�cant t bits of X with t
zeros. This implies

T (X) � X < T (X) + 2t .

We reduce the pair (C; S) by performing the following operation Q times:

I. (Ĉ; Ŝ) := C + S �N .

J. If T (Ĉ) + T (Ŝ) � 0 then set C := Ĉ and S := Ŝ.

In Step J, the computation of the sign bit R of T (Ĉ) + T (Ŝ) involves n� t most signi�cant
bits of Ĉ and Ŝ. The above procedure reduces a carry-sum pair from the range

0 � C0 + S0 < (Q + 1)N + 2t

to the range
0 � CR + SR < N + 2t ,

where (C0; S0) and (CR; SR) respectively denote the initial and the �nal carry-sum pair.
Since the function T always underestimates, the result is never over-reduced, i.e.,

CR + SR � 0 .

If the estimated sign in Step J is positive for all Q iterations, then QN is subtracted from
the initial pair; therefore

CR + SR = C0 + S0 �QN < N + 2t .

If the estimated sign becomes negative in an iteration, it stays negative thereafter to the last
iteration. Thus, the condition

T (Ĉ) + T (Ŝ) < 0

in the last iteration of Step J implies that

T (Ĉ) + T (Ŝ) � �2t ,

since T (X) is always a multiple of 2t. Thus, we obtain the range of Ĉ and Ŝ as

T (Ĉ) + T (Ŝ) � Ĉ + Ŝ < T (Ĉ) + T (Ŝ) + 2t+1 .

18

It follows from the above equations that

Ĉ + Ŝ < 2t+1 � 2t = 2t .

Since in Step I we perform (Ĉ; Ŝ) := C +S �N and in the last iteration the carry-sum pair
is not reduced (because the estimated sign is negative), we must have

CR + SR = Ĉ + Ŝ +N ,

which implies
CR + SR < N + 2t .

The modular reduction procedure described above subtracts N from (C; S) in each of the Q
iterations. The procedure can be improved in speed by subtracting 2k�jN during iteration
j, where (Q+ 1) � 2k and j = 1; 2; 3; : : : ; k. For example, if Q = 3, then k = 2 can be used.
Instead of subtracting N three times, we �rst subtract 2N and then N . This observation is
utilized in the following algorithm:

1. Set S(0) := 0 and C(0) := 0.
2. Repeat 2a, 2b, and 2c for i = 1; 2; 3; : : : ; k

2a. (C(i); S(i)) := 2C(i�1) + 2S(i�1) + An�iB.

2b. (Ĉ(i); Ŝ(i)) := C(i) + S(i) � 2N .

If T (Ĉ(i)) + T (Ŝ(i)) � 0, then set C(i) := Ĉ(i) and S(i) := Ŝ(i).

2c. (Ĉ(i); Ŝ(i)) := C(i) + S(i) �N .

If T (Ĉ(i)) + T (Ŝ(i)) � 0, then set C(i) := Ĉ(i) and S(i) := Ŝ(i).
3. End.

The parameter t controls the precision of estimation; the accuracy of the estimation and the
total amount of logic required to implement it decreases as t increases. After Step 2c, we
have

C(i) + S(i) < N + 2t ,

which implies that after the next shift-add step the range of C(i+1) + S(i+1) will be [0; 3N +
2t+1). Assuming Q = 3, we have

3N + 2t+1 � (Q+ 1)N + 2t = 4N + 2t ,

which implies 2t � N , or t � n� 1. The range of C(i+1) + S(i+1) becomes

0 � C(i+1) + S(i+1) < 3N + 2t+1 � 3N + 2n � 2n+2 ,

and after Step 2b, the range will be

�2n+1 � �2N � C(i+1) + S(i+1) < N + 2n < 2n+1 .

In order to contain the temporary results, we use (n + 3)-bit carry save adders which can
represent integers in the range [�2n+2; 2n+2). When t = n� 1, the sign estimation technique

19

checks 5 most signi�cant bits of Ĉ(i) and Ŝ(i) from the bit locations n � 2 to n + 3. This
algorithm produces a pair of integers (C; S) = (C(n); S(n)) such that P = C+S is in the range
[0; 2N). The �nal result in the correct range [0; N) can be obtained by computing P = C+S
and P̂ = C + S �N using carry propagate adders. If P̂ < 0, we have P = P̂ +N < N , and
thus P is in the correct range. Otherwise, we choose P̂ because 0 � P̂ = P � N < 2t < N
implies P̂ 2 [0; N). The steps of the algorithm for computing 47�48 (mod 50) are illustrated
in the following �gure. Here we have

k = blog2(50)c+ 1 = 6 ,

A = 47 = (000101111) ,

B = 48 = (000110000) ,

N = 50 = (000110010) ,

M = �N = (111001110) .

The algorithm computes the �nal result

(C; S) = (010111000; 110000000) = (184;�128)

in 3k = 18 clock cycles. The range of C + S = 184� 128 = 56 is [0; 2 � 50). The �nal result
is found by computing C + S = 56 and C + S � N = 6, and selecting the latter since it is
positive.

C S Ĉ Ŝ T (Ĉ) + T (Ŝ) R
i = 0 000000000 000000000 { { { {

2a 000000000 000110000 { { { {
i = 1 2b 000000000 000110000 000100000 110101100 111000000 1

2c 000000000 000110000 000000000 111111110 111100000 1
2a 000000000 001100000 { { { {

i = 2 2b 000000000 001100000 000000000 111111100 111100000 1
2c 010000000 110101110 010000000 110101110 000100000 0
2a 000100000 001101100 { { { {

i = 3 2b 001011000 111010000 001011000 111010000 000000000 0
2c 001011000 111010000 110110000 001000110 111100000 1
2a 101100000 100100000 { { { {

i = 4 2b 001000000 111011100 001000000 111011100 000000000 0
2c 001000000 111011100 110011000 001010010 111000000 1
2a 101100000 100001000 { { { {

i = 5 2b 101100000 100001000 000010000 111110100 111100000 1
2c 010010000 110100110 010010000 110100110 000100000 0
2a 001000000 001011100 { { { {

i = 6 2b 010111000 110000000 010111000 110000000 000100000 0
2c 010111000 110000000 100010000 011110110 111100000 1

20

7.3 Brickell's Method

This method is based on the use of a carry delayed integer introduced in Section 5.6. Let A
be a carry delayed integer, then, it can be written as

A =
k�1X

i=0

(Ti +Di) � 2
i .

The product P = AB can be computed by summing the terms:

(T0 �B +D0 �B) � 2
0 +

(T1 �B +D1 �B) � 2
1 +

(T2 �B +D2 �B) � 2
2 +

...
(Tk�1 �B +Dk�1 �B) � 2

k�1

Since D0 = 0, we rearrange to obtain

20 � T0 �B + 21 �D1 �B +
21 � T1 �B + 22 �D2 �B +
22 � T2 �B + 23 �D3 �B +

...
2k�2 � Tk�2 �B + 2k�1 �Dk�1 �B +

2k�1 � Tk�1 �B

Also recall that either Ti or Di+1 is zero due to the property of the carry delayed adder.
Thus, each step requires a shift of B and addition of at most 2 carry delayed integers:

� Either: (Pd; Pt) := (Pd; Pt) + 2i � Ti �B

� Or: (Pd; Pt) := (Pd; Pt) + 2i+1 �Di+1 �B

After k steps P = (Pd; Pt) is obtained. In order to compute P (mod n), we perform
reduction:

If P � 2k�1 � n then P := P � 2k�1 � n
If P � 2k�2 � n then P := P � 2k�2 � n
If P � 2k�3 � n then P := P � 2k�3 � n

...
If P � n then P := P � n

We can also reverse these steps to obtain:

P := Tk�1 �B � 2k�1

P := P + Tk�2 �B � 2k�2 +Dk�1 �B � 2k�1

P := P + Tk�3 �B � 2k�3 +Dk�2 �B � 2k�2

...

P := P + T1 �B � 21 +D2 �B � 22

P := P + T0 �B � 20 +D1 �B � 21

21

Also, the multiplication steps can be interleaved with reduction steps. To perform the
reduction, the sign of P � 2i �n needs to be determined (estimated). Brickell's solution [3] is
essentially a combination of the sign estimation technique and Omura's method of correction.
We allow enough bits for P , and whenever P exceeds 2k, add m = 2k � n to correct the
result. 11 steps after the multiplication procedure started, the algorithm starts subtracting
multiples of n. In the following, P is a carry delayed integer of k + 11 bits, m is a binary
integer of k bits, and t1 and t2 control bits, whose initial values are t1 = t2 = 0.

1. Add the most signi�cant 4 bits of P and m � 211.

2. If over
ow is detected, then t2 = 1 else t2 = 0.

3. Add the most signi�cant 4 bits of P and the most signi�cant 3 bits of m � 210.

4. If over
ow is detected and t2 = 0, then t1 = 1 else t1 = 0.

The multiplication and reduction steps of Brickell's algorithm are as follows:

B0 := Ti �B + 2 �Di+1 �B

m0 := t2 �m � 211 + t1 �m � 210

P := 2(P +B0 +m0)

A := 2A .

7.4 Montgomery's Method

The Montgomery algorithm computes

MonPro(A;B) = A �B � r�1 mod n

given A;B < n and r such that gcd(n; r) = 1. Even though the algorithm works for any
r which is relatively prime to n, it is more useful when r is taken to be a power of 2,
which is an intrinsically fast operation on general-purpose computers, e.g., signal processors
and microprocessors. To �nd out why the above computation is useful for computing the
modular exponentiation, we refer the reader to the companion report [12]. In this section,
we introduce an e�cient binary add-shift algorithm for computing MonPro(A;B), and then
generalize it to the m-ary method. We take r = 2k, and assume that the number of bits in
A or B is less than k. Let A = (Ak�1Ak�2 � � �A0) be the binary representation of A. The
above product can be written as

2�k � (Ak�1Ak�2 � � �A0) �B = 2�k �
k�1X

i=0

Ai � 2
i �B (mod n) .

The product t = (A0 + A12 + � � �Ak�12
k�1) �B can be computed by starting from the most

signi�cant bit, and then proceeding to the least signi�cant, as follows:

22

1. t := 0
2. for i = k � 1 to 0
2a. t := t+ Ai �B
2b. t := 2 � t

The shift factor 2�k in 2�k � A �B reverses the direction of summation. Since

2�k � (A0 + A12 + � � �Ak�12
k�1) = Ak�12

�1 + Ak�22
�2 � � �A02

�k ,

we start processing the bits of A from the least signi�cant, and obtain the following binary
add-shift algorithm to compute t = A �B � 2�k.

1. t := 0
2. for i = 0 to k � 1
2a. t := t+ Ai �B
2b. t := t=2

The above summation computes the product t = 2�k � A � B, however, we are interested in
computing u = 2�k � A � B (mod n). This can be achieved by subtracting n during every
add-shift step, but there is a simpler way: We add n to u if u is odd, making new u an even
number since n is always odd. If u is even after the addition step, it is left untouched. Thus,
u will always be even before the shift step, and we can compute

u := u � 2�1 (mod n)

by shifting the even number u to the right since u = 2v implies

u := 2v � 2�1 = v (mod n) .

The binary add-shift algorithm computes the product u = A �B � 2�k (mod n) as follows:

1. u := 0
2. for i = 0 to k � 1
2a. u := u+ Ai �B
2b. If u is odd then u := u+ n
2c. u := u=2

We reserve a (k + 1)-bit register for u because if u has k bits at beginning of an add-shift
step, the addition of Ai �B and n (both of which are k-bit numbers) increases its length to
k + 1 bits. The right shift operation then brings it back to k bits. After k add-shift steps,
we subtract n from u if it is larger than n.

Also note that Steps 2a and 2b of the above algorithm can be combined: We can compute
the least signi�cant bit u0 of u before actually computing the sum in Step 2a. It is given as

u0 := u0 � (AiB0) .

Thus, we decide whether u is odd prior to performing the full addition operation u := u+AiB.
This is the most important property of Montgomery's method. In contrast, the classical
modular multiplication algorithms (e.g., the interleaving method) computes the entire sum
in order to decide whether a reduction needs to be performed.

23

7.5 High-Radix Interleaving Method

Since the speed for radix 2 multipliers is approaching limits, the use of higher radices is
investigated. High-radix operations require fewer clock cycles, however, the cycle time and
the required area increases. Let 2b be the radix. The key operation in computing P = AB
(mod n) is the computation of an inner-product steps coupled with modular reduction, i.e.,
the computation of

P := 2b � P + A �Bi �Q � n ,

where P is the partial product and Bi is the ith digit of B in radix 2b. The value of Q
determines the number of times the modulus n is subtracted from the partial product P in
order to reduce it modulo n. We compute Q by dividing the current value of the partial
product P by n, which is then multiplied by n and subtracted from the partial product
during the next cycle. This implementation is illustrated in the following �gure.

B (Multiplier) A (Multiplicand)

Accumulator

Shift Left
 b bits

Shift Left
 b bits

Divide by n

n (Modulus)

+ +

b+1 bits

b bits

For the radix 2, the partial product generation is performed using an array of AND gates.
The partial product generation is much more complex for higher radices, e.g., Wallace trees
and generalized counters need to be used. However, the generation of the high-radix partial
products does not greatly increase cycle time since this computation can be easily pipelined.
The most complicated step is the reduction step, which necessitates more complex routing,
increasing the chip area.

7.6 High-Radix Montgomery's Method

The binary add-shift algorithm is generalized to higher radix (m-ary) algorithm by proceed-
ing word by word, where the wordsize is w bits, and k = sw. The addition step is performed
by multiplying one word of A by B and the right shift is performed by shifting w bits to the
right. In order to perform an exact division of u by 2w, we add an integer multiple of n to
u, so that the least signi�cant word of the new u will be zero. Thus, if u 6= 0 (mod 2w), we

24

�nd an integer m such that u+m � n = 0 (mod 2w). Let u0 and n0 be the least signi�cant
words of u and n, respectively. We calculate m as

m = �u0 � n
�1
0 (mod 2w) .

The word-level (m-ary) add-shift Montgomery product algorithm is given below:

1. u := 0
2. for i = 0 to s� 1
2a. u := u+ Ai �B
2b. m := �u0 � n

�1
0 mod 2w

2c. u := u+m � n
2d. u := u=2w

This algorithm specializes to the binary case by taking w = 1. In this case, when u is odd,
the least signi�cant bit u0 is nonzero, and thus, m = �u0 � n

�1
0 = 1 (mod 2).

25

References

[1] G. R. Blakley. A computer algorithm for the product AB modulo M. IEEE Transactions

on Computers, 32(5):497{500, May 1983.

[2] R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Transactions

on Computers, 31(3):260{264, March 1982.

[3] E. F. Brickell. A fast modular multiplication algorithm with application to two key
cryptography. In D. Chaum, R. L. Rivest, and A. T. Sherman, editors, Advances in

Cryptology, Proceedings of Crypto 82, pages 51{60. New York, NY: Plenum Press, 1982.

[4] E. F. Brickell. A survey of hardware implementations of RSA. In G. Brassard, edi-
tor, Advances in Cryptology | CRYPTO 89, Proceedings, Lecture Notes in Computer
Science, No. 435, pages 368{370. New York, NY: Springer-Verlag, 1989.

[5] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponentiation
with precomputation. In R. A. Rueppel, editor, Advances in Cryptology | EURO-

CRYPT 92, Lecture Notes in Computer Science, No. 658, pages 200{207. New York,
NY: Springer-Verlag, 1992.

[6] W. Di�e and M. E. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22:644{654, November 1976.

[7] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469{472, July 1985.

[8] B. Gilchrist, J. H. Pomerene, and S. Y. Wong. Fast carry logic for digital computers.
IRE Transactions on Electronic Computers, 4:133{136, 1955.

[9] F. Hoornaert, M. Decroos, J. Vandewalle, and R. Govaerts. Fast RSA-hardware: dream
or reality? In C. G. Gunther, editor, Advances in Cryptology | EUROCRYPT 88,
Lecture Notes in Computer Science, No. 330, pages 257{264. New York, NY: Springer-
Verlag, 1988.

[10] K. Hwang. Computer Arithmetic, Principles, Architecture, and Design. New York, NY:
John Wiley & Sons, 1979.

[11] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.
Reading, MA: Addison-Wesley, Second edition, 1981.

[12] C� . K. Ko�c. High-Speed RSA Implementation. Technical Report TR 201, RSA Labora-
tories, November 1994.

[13] C� . K. Ko�c and C. Y. Hung. Carry save adders for computing the product AB modulo
N . Electronics Letters, 26(13):899{900, 21st June 1990.

26

[14] C� . K. Ko�c and C. Y. Hung. Multi-operand modulo addition using carry save adders.
Electronics Letters, 26(6):361{363, 15th March 1990.

[15] C� . K. Ko�c and C. Y. Hung. Bit-level systolic arrays for modular multiplication. Journal
of VLSI Signal Processing, 3(3):215{223, 1991.

[16] M. Kochanski. Developing an RSA chip. In H. C. Williams, editor, Advances in Cryp-

tology | CRYPTO 85, Proceedings, Lecture Notes in Computer Science, No. 218, pages
350{357. New York, NY: Springer-Verlag, 1985.

[17] I. Koren. Computer Arithmetic Algorithms. Englewood Cli�s, NJ: Prentice-Hall, 1993.

[18] D. C. Kozen. The Design and Analysis of Algorithms. New York, NY: Springer-Verlag,
1992.

[19] R. Ladner and M. Fischer. Parallel pre�x computation. Journal of the ACM, 27(4):831{
838, October 1980.

[20] S. Lakshmivarahan and S. K. Dhall. Parallelism in the Pre�x Problem. Oxford, London:
Oxford University Press, 1994. In press.

[21] J. D. Lipson. Elements of Algebra and Algebraic Computing. Reading, MA: Addison-
Wesley, 1981.

[22] National Institute for Standards and Technology. Digital signature standard (DSS).
Federal Register, 56:169, August 1991.

[23] J. K. Omura. A public key cell design for smart card chips. In International Symposium

on Information Theory and its Applications, pages 983{985, Hawaii, USA, November
27{30, 1990.

[24] R. L. Rivest. RSA chips (Past/Present/Future). In T. Beth, N. Cot, and I. Ingemarsson,
editors, Advances in Cryptology, Proceedings of EUROCRYPT 84, Lecture Notes in
Computer Science, No. 209, pages 159{165. New York, NY: Springer-Verlag, 1984.

[25] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120{126, February
1978.

[26] RSA Laboratories. Answers to Frequently Asked Questions About Today's Cryptogra-
phy. RSA Data Security, Inc., October 1993.

[27] RSA Laboratories. The Public-Key Cryptography Standards (PKCS). RSA Data Se-
curity, Inc., November 1993.

[28] H. Sedlak. The RSA cryptography processor. In D. Chaum and W. L. Price, editors,
Advances in Cryptology | EUROCRYPT 87, Lecture Notes in Computer Science, No.
304, pages 95{105. New York, NY: Springer-Verlag, 1987.

27

[29] K. R. Sloan, Jr. Comments on \A computer algorithm for the product AB modulo M".
IEEE Transactions on Computers, 34(3):290{292, March 1985.

[30] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor, editors. Residue

Arithmetic: Modern Applications in Digital Signal Processing. New York, NY: IEEE
Press, 1986.

[31] E. E. Swartzlander, editor. Computer Arithmetic, volume I and II. Los Alamitos, CA:
IEEE Computer Society Press, 1990.

[32] N. S. Szabo and R. I. Tanaka. Residue Arithmetic and its Applications to Computer

Technology. New York, NY: McGraw-Hill, 1967.

[33] C. D. Walter. Systolic modular multiplication. IEEE Transactions on Computers,
42(3):376{378, March 1993.

[34] S. Waser and M. J. Flynn. Introduction to Arithmetic for Digital System Designers.
New York, NY: Holt, Rinehart and Winston, 1982.

28

