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RSA for Paranoids

Adi Shamir
Applied Math Department
The Weizmann Institute of Science
Rehovot 76100, Israel

One of the most important decisions in practical
implementations of the RSA cryptosystem is the
choice of modulus size. It is clear that the standard
size of 512 bits no longer provides adequate protec-
tion, and should be substantially increased. How-
ever, the time complexity of modular exponentia-
tion grows rapidly with the size of the modulus,
and thus it is difficult to choose a size which com-
bines efficient operation with long term security.
In this note we describe a new variant of the RSA
cryptosystem called “unbalanced RSA”, which
makes it possible to increase the modulus size from
500 bits to 5,000 bits without any speed penalty.

Conventional RSA

The security of the RSA cryptosystem depends
(but is not provably equivalent to) the difficulty of
factoring the modulus n, which is the product of
two equal size primes p and g. Until recently, the
minimum recommended size of n was 512 bits.
However, recent advances in factoring algorithms
make it necessary to increase this size. Since the
time complexity of RSA computations is already
substantial, and grows cubically with the size of the
modulus, the new size should by necessity be a com-
promise between efficiency and security. The choice
is particularly difficult for paranoid organizations

Adi Shamir is professor at the Applied Math Department of the
Weizmann Institute of Science, Israel. He is a co-inventor of the
RSA cryptosystem and can be contacted at shamir@uwisdom.
weiymann.ac.il.

whose encrypted messages should remain secret for
several decades, since it is almost impossible to pre-
dict the progress of factoring algorithms over such a
long period of time. The only reasonable course of
action is to use huge margins of safety, but this will
make the RSA operations extremely slow.

All the known factoring algorithms can be divided
into two broad types: algorithms whose running
time depends on the size of the factors, and algo-
rithms whose running time depends only on the
size of the factored number n. The oldest factoring
algorithms typically searched for the smallest fac-
tor p of n, and were thus of the first type. However,
modern algorithms tend to use indirect approaches
which require the same time to find a single digit
or a fifty digit prime factor of n.

The fastest factoring algorithm of the first type is
currently the elliptic curve method. Its asymptotic
running time is exp(O((In(p))¥2 + (Inln(p))*/2)), but
its basic operations are very slow. The largest factor
ever found in practice with this algorithm was
about 145 bits long (A. Lenstra, private communi-
cation), and it is very unlikely that this algorithm
will be able to find the 256 bit factors of 512 bit

RSA keys in the next few years.

Factoring algorithms of the second type are much
faster, since they can use a wider array of math-
ematical techniques. The best algorithm of this type
is currently the general number field sieve. It has
an asymptotic complexity of exp(O((In(n))'5 -
(Inln(n))?3)), and is believed to be capable of fac-
toring 512 bit moduli in 10,000 to 15,000 MIPS-
years (A. Lenstra, private communication). This is

(continued on page 3)



At most
conferences,

time is set aside
for researchers

to present their
latest results
outside of the
main program....
This means that

it is often hard

to track down the
essential details
of what was said.

Editor’s Note

In this, the autumn edition of CryptoBytes, we have
decided to concentrate on issues related to the use of
the RSA cryptosystem.

The main article in this issue is entitled The Secure
Use of RSA. Adapted from a seminar presented by
Ron Rivest at the 1995 RSA Laboratories Seminar
Series, this article considers the myths and realities
of using the RSA cryptosystem. From low exponent
attacks to padding rules, this article provides the
ground rules for avoiding a variety of potential at-
tacks on RSA when used either to provide message
encryption or to digitally sign documents.

We also have a variety of reports on several recent
research results.

At most conferences, time is set aside for researchers
to present their latest results outside of the main pro-
gram, and consequently, outside of the conference
proceedings. This means that it is often hard to track
down the essential details of what was said. As initial
steps to make information on rump session items more
widely available, we present reports on three items
that were presented at recent rump sessions.

A novel idea by Adi Shamir, leading to a rather un-
conventional implementation of RSA, has some very
intriguing properties. In this issue of CryptoBytes
we include an article by Adi Shamir which provides
more details on ideas that were originally presented
at the rump session of Eurocrypt ’95 earlier this year.

We also have news of two items from the rump ses-
sion of the Crypto '95 conference. We report on a
new “protocol failure” when RSA is used with expo-
nent three and also on a new attack on the envelope
method of using a hash function for message authen-
tication. (In one way or another, message authenti-
cation with hash functions has featured in all issues
of CryptoBytes so far!) Also, as part of our ongoing
features, we provide an Algorithms Update on some
very exciting new work in the analysis of hash func-
tions by Hans Dobbertin.

Finally, in this issue, we introduce a new column:
Frequently Asked Questions. Extracted from the ongo-
ing enhancements to RSA Laboratories’ Answers to
Frequently Asked Questions, this column will feature
answers to new questions on today’s cryptography that

are of particular interest to our readers. In this issue,
the question “How do digital time-stamps support
digital signatures?” is answered by Stuart Haber, Burt
Kaliski and Scott Stornetta.

The future success of CryptoBytes depends on input
from all sectors of the cryptographic community
and as usual we would very much like to thank the
writers who have contributed to this third issue. We
encourage any readers with comments, opposite
opinions, suggestions, proposals for questions in our
Frequently Asked Questions column or proposals for
items in future issues to contact the CryptoBytes edi-
tor by any of the methods given below. =g

Contact and Subscription
Information

CryptoBytes will be available by subscrip-
tion and individual annual subscription to
four issues is U.S.$90. To subscribe, con-
tact RSA Laboratories at:

RSA Laboratories

100 Marine Parkway, Suite 500
Redwood City, CA 94065
415/595-7703

415/595-4126 (fax)

rsa-labs@rsa.com

We are hoping that electronic subscrip-
tion to CryptoBytes, via the World-Wide
Web, will be available soon. All back is-
sues are available via the World-Wide Web
at http:/fwww.rsa.com/rsalabs/cryptobytes/.

The CryptoBytes editor can be contacted
by any of the above methods, or by E-mail
to bytes-ed@rsa.com.

About RSA Laboratories

RSA Laboratories is the research and development division of RSA
Data Security, Inc., the company founded by the inventors of the
RSA public-key cryptosystem. RSA Laboratories reviews, designs
and implements secure and efficient cryptosystems of all kinds. Its
clients include government agencies, telecommunications compa-
nies, computer manufacturers, software developers, cable TV
broadcasters, interactive video manufacturers, and satellite broad-
cast companies, among others.
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RSA for Paranoids
Continued from page 1

only 2-3 times harder than the factorization of RSA-
129 achieved (by a different algorithm) in early 1994,
and is likely to be demonstrated within a year.

Since the inception of the RSA cryptosystem, all the
record breaking factorizations of RSA keys were based
on algorithms of the second type, and it is reasonable
to assume that this trend will continue in the foresee-
able future. If this is the case, there is no need to in-
crease the sizes of n and its prime factors at the same
rate. In this paper we use this observation in order to
propose a new variant of the RSA cryptosystem, which
we call “unbalanced RSA”. Its goal is to provide much
higher security at essentially no extra cost.

Unbalanced RSA

As a typical example of the new RSA variant, we
“ultimate security” implementation,
which is likely to provide long term security even to
professional paranoids. In this version we increase
the overall size of n by a factor of 10 (to 5,000 bits),
and the size of its prime factor p by a factor of 2 (to
500 bits). The size of the other factor q of n is 4,500

bits, and the name of this variant reflects the un-

describe an

equal sizes of the two prime factors of n.

Such a modulus is way out of reach of today’s factor-
ing algorithms, and is likely to remain secure even if
factoring algorithms of the first type will become
much better, and factoring algorithms of the second
type will become enormously better. Only a major
breakthrough in factoring (such as a practical polyno-
mial time factoring algorithm, which will completely
kill the RSA scheme) can possibly threaten it.

The main problem in using such a modulus n is the
fact that standard RSA implementations become
about 1000 times slower: A typical 500 bit exponen-
tiation which required 1 second on a microprocessor
would now require 16 minutes, which is unacceptable.

Since RSA encryption is typically used only in order
to exchange session keys for fast secret key crypto-
systems, the cleartexts are usually quite short: even
three independent keys for triple DES require only
168 bits, and it is unlikely that anyone would use
the RSA cryptosystem to exchange secret keys which
are larger than p. We can thus assume that the
cleartext is in the range [0, p), and that it is padded
with random bits to make sure that it is not much
shorter than p.

A well known way of speeding up the RSA encryp-
tion process ¢ = m¢ (mod n) is to use a small encryp-
tion exponent e. Since m is only one tenth the size
of n, encryption exponents which are smaller than
10 do not provide any wraparound during the modu-
lar reduction, and should be avoided. When e is
around 20, the size of me¢ is about twice the size of n,
and thus the wraparound effect is similar to the squar
ing operation of full size numbers in Rabin’s scheme.
Note that for such an e, most of the multiplications
in the computation of m¢ (mod n) are non modular
multiplications of relatively small numbers, and only
the last squaring is likely to be a full size modular
multiplication. The recommended range of e is 20-
100, which makes the encryption time with a 5,000
bit modulus comparable to the decryption time with
a 500 bit modulus (i.e., less than a second).

The other operation we have to consider is the de-
cryption process m = ¢4 (mod n) in which ¢, n and d
are 5,000 bit numbers. If we use the Chinese remain-
der theorem, we can easily compute m;=c? (mod p)
via a 500 bit exponentiation, by reducing ¢ modulo
p and d modulo p—1 at the beginning of the compu-
tation. However, we then have to carry out the 4,500
bit exponentiation m, = ¢4 (mod q), which is =729
times slower.

The main purpose of this note is to show that there
is no need to carry out this expensive computation.
By definition, m, is equal to m (mod p). However,
the cleartext m is known to be smaller than p, and
thus m (mod p) is simply m itself. By combining these
observations, we conclude that m; is the original
cleartext m, and thus it is just a waste of time to
carry out the computation of m, modulo g, which
will yield the same result.

Other optimizations

While the unbalanced RSA variant has about the
same time complexity as the original variant, its
space complexity and public key size are 10 times
larger. We now show how to use additional optimi-
zation techniques to avoid these extra overheads.

Consider first the issue of RAM size. On personal
computers the 10-fold increase in the size of the reg-
isters is meaningless, but smart cards contain very
small RAMs and their cost is directly proportional
to the size of their memory. In addition, many smart
card manufacturers have already designed RSA

In this paper ...
[we] propose
a new variant
of the RSA
cryptosystem,
which we call
“unbalanced
RSA”. Iis goal
is to provide
much higher
security at
essentially

no extra cost.
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... the technique
described in this
paper can also
be used to double
the speed and
halve the key
size of standard
implementations
of the RSA
cryptosystem
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p and q have
similar sizes.

coprocessors which can handle 512 bit moduli, and
would be reluctant to redesign them in order to ac-
commodate much larger moduli. However, in most
applications the smart card is talking to a powerful
PC or workstation, and we can choose to implement
either the encryption or the decryption side of the
RSA key exchange on the smart card. It turns out
to be easier to let the powerful machine choose and
encrypt the session key. The arbitrarily long cipher-
text is sent to the smart card in a bit serial mode,
and the smart card reduces it on-the-fly modulo p by
clocking it through the 512 bit input register of its
coprocessor. The resultant value is then exponent-
iated by the 512 bit coprocessor to obtain the ses-
sion key. The advantage of this approach is that
today’s coprocessors would be able to handle vari-
able length moduli (dictated by the changing state
of the art of factoring algorithms) without expensive
periodic replacements of millions of smart cards in
large-scale consumer applications.

Another potential drawback of the new variant is
the 10-fold increase in the size of the public key di-
rectory. However, the unbalanced construction of the
new public keys makes it possible to eliminate this
problem. Let G be a publicly known pseudo random
bit generator which maps each user identity u (name,
email address, etc.) into a unique 5,000 bit pseudo
random target value t. Each user picks a random 500-
bit prime p, and defines the other prime q as a ran-
dom prime number in the range [a, a + 2°°] where a

is the smallest integer greater than or equal to t/p.
Since the prime numbers are relatively dense, such a
q almost certainly exists, and n = pq is very close to
the target value t (the difference s = n -t is expected
to be about 550 bits long). Each user u publishes this
550-bit s as his public key, and anyone can recover
the user’s 5,000-bit modulus n by computing G(u) + s.

[t is important to note that this approach does not
make n easy to factor: the only difference between
our n and standard n is that we start the search for g
at a point which is the ratio of a random number and
a prime number, rather than at a random number.
Since the distribution of prime numbers p is not
completely uniform, the choice of a is not completely
uniform. We smooth this slight nonuniformity by
specifying a fairly large range of size 2°° in which g
can be chosen, which makes the exact location of
the range’s endpoints irrelevant. Once n is chosen,
it makes no difference whether we specify it by its
bits or by its distance s from another number t, and
the fact that t is a pseudo random rather than a truly
random number cannot change this fact.

Finally, we note that the technique described in this
paper can also be used to double the speed and halve
the key size of standard implementations of the RSA
cryptosystem in which p and q have similar sizes.
The optimization does not apply to the RSA signa-
ture scheme, since the verifier cannot carry out com-
putations modulo the unknown p. B=g

A L G O R I T H

S U P D A T E

Collisions in MD4

Recent work by Hans Dobbertin has discovered that
collisions for MD4 can be found within a few min-
utes on a typical PC. Even more impressive is the
fact that collisions can be constructed, in around an
hour, so that the text they represent makes sense. For
an example, see how Alf swindles Ann opposite.

MD4 was among the first of a new generation of
what are termed dedicated hash functions, designed
from first principles to be hash functions rather than
being based around some other primitive such as a
block cipher. MD5, RIPEMD, the secure hash algo-

rithm SHA and its more recent revision SHA-1 fol-
low the same design approach that was pioneered by
Rivest with MD4. Rivest also designed an extended
version of MD4 with a 256-bit rather than 128-bit
hash value which was considered to be much more
secure than MDA4. It appears, however, that these new
techniques will also compromise extended-MDA4.

While MD4 remained secure until now, it was felt
that MD4 made little allowance for potential crypt-
analytic developments. Consequently, the use of
MD4 has been discouraged for some considerable
time, and instead the usual recommendation was to
replace MD4 with the more conservatively designed

CRYPTOBYTES E AUTUMN 1995 — THE TECHNICAL NEWSLETTER OF RSA LABORATORIES



MD?5. Dobbertin’s work clearly confirms that if MD4
is still being used anywhere, then it should be imme-
diately replaced.

As for the applicability of Dobbertin’s techniques to
other hash functions such as MD5, RIPEMD and

SHA-1, the task facing the cryptanalyst is much more
involved. Initial review of those algorithms suggests a
limited opportunity for new developments (except on
reduced-round versions of RIPEMD which have al-
ready succumbed to this type of analysis) and Crypto-
Bytes will report on any further developments. ¥=g

Alf Swindles Ann

Hans Dobbertin
German Information Security Agency
PO. Box 20 10 63,
D-53133 Bonn, Germany

Alf wanted to sell Ann his house, and Ann was
interested. They agreed on a price of $176,495. Alf asked
Ann to sign a contract using a digital signature scheme
which is based on some public-key algorithm and the
hash function MD4. The contract read as follows:

sf sk sk sfeske sk sk sk skesie skt sk stk skeokoskokosk

CONTRACT

At the price of $176,495 Alf Blowfish sells

his house to Ann Bonafide. ...

“The first 20 bytes (each of them is represented by an
asterisk above) are random. They have been placed be-
fore the text for security reasons!” claimed Alf, and Ann
signed the contract. Later, however, Alf substituted

the contract file by another which read as follows:

sk sk sk st ke sk sk sk skeske skt sk stk skeokoskokosk

CONTRACT

At the price of $276,495 Alf Blowfish sells

his house to Ann Bonafide. ...

The contract had been prepared by him such that re-
placing $176,495 by $276,495 does not change the
MD4 hash value!

How Alf did it

For the precise definition of the above digital contract

note that the first sixteen 32-bit words are:

Professor Hans Dobbertin is particularly interested in the
evaluation and design of cryptographic algorithms. He can be
contacted at dobbertin@skom.rhein.de.

M, = 0x9074449b
M, = 0x1089fc26
M, = 0x8bf37fa2
M; = 0x1d630daf
M, = 0x63247¢24
M; = 0x4e4f430a
M = 0x43415254
M; = 0x410a0a54

M; = 0x68742074

M, = 0x72702065

Mo = 0x20656369
M, = 0x2420666f
M, = 0x2C363731
M,; = 0x20353934
M, = 0x20666¢41
M5 = 0x776f6C42

The twenty bytes of My-M, are the above mentioned
“random bytes”. The bytes of Ms, in reverse ordering
(according to the definition of MD4) and interpreted as
ASCII read as follows:

0a 43 4f 4e = Line-feed ‘CON’,
and so on to M5 which reads
42 6c 6f77 = ‘Blow’.

The sequence M; (i<16) has been chosen such that set-
ting M’;; = Mjp+1 and M’; = M, for i<16, i # 12 gives a

collision, i.e.
compress(IV; M) = compress(IV; M)

for the compress function of MD4 and its fixed initial
value IV. In [1] the basic method of generating such
collisions was described. They can be found in less than
one hour on a PC. Interpreting M, = 0x2c363731 and
M’(; = 0x2c363732 we get:

My, = 313736 2c =176,
M, = 32 37 36 2¢ = 276,

In view of the definition of MD4 as the iterative appli-
cation of compress, we obtain a collision by taking any

bit string and appending it to M and M’.
Where MD4 is still in use, it should be replaced!

References
[1] Dobbertin, H.: Cryptanalysis of MD4, preprint. Be=g
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A L G O R I T

H M

S U P D A T E

More Developments with

Keyed Hash Functions

At the rump session of Crypto’95, Bart Preneel in
joint work with Paul van Qorschot described a new
attack on one method of message authentication
using a keyed hash function (see CryptoBytes vol-
ume 1, number 1).

In what is sometimes called the enwvelope method, a
hash function H can be used to provide authentica-
tion of a message m under the action of two keys k;
and k, by using the result of H(k; + m « k,) as a mes-
sage authentication code for the message m. A vari-
ety of padding schemes might also be specified as
additional security measures.

Previously (see CryptoBytes volume 1, number 2),
Preneel and van Oorschot have reported that the
envelope method of keyed-MD5 allows a MAC forg-
ery attack with “2% known message-MAC pairs and
a single chosen text.” These known messages have
to be the same length and additional reductions in
the data requirements are possible if the messages
are known to have a particular form.

At the rump session of Crypto '95, Preneel described
a new attack on the envelope method which allows
recovery of the secret key rather than just a MAC
forgery. For the new attack to succeed, the length of
the messages being authenticated is carefully chosen
by the cryptanalyst to ensure that the action of the
second key k, is split into two parts, one under the
influence of k, and the other under k;,, where k, is
equal to the concatenation k, * k;,.

The attack requires two phases, the first of which is
in effect the previously mentioned MAC-forgery
attack. Using information obtained from this first
phase, the cryptanalyst requests the MACs on 2 !%al
pairs of chosen messages (2!%1*1 messages in total)
where | k,| denotes the number of bits in k,. These
new message pairs are chosen according to different
guesses for k.

When the guess for k, is correct, the MACs gener-
ated for that pair of messages will be the same and k,
can be correctly identified. The rest of k, can be
found either by exhaustive search, or by using mes-
sages of a second carefully chosen length to split the
unknown remainder of k; once again.

The increased work and data requirements for the
new attack over that offering MAC-forgery depend
on the length of k, since this determines the num-
ber of guesses a cryptanalyst is required to try in the
second phase. However, since the cryptanalyst can
choose this length, the requirements of the attack
are effectively dominated by the requirements for

the MAC-forgery attack.

Since the MAC-forgery attack is barely practical the
same must be said of this new attack which recovers
the key. However the new attack does demonstrate
a certificational weakness in the envelope method
since the secret key can be recovered with much less
work than the length of the secret key might imply.
While the use of additional padding (to prevent the
splitting of k,) would thwart this attack, it seems
fair to recommend different mechanisms than the
envelope method for providing message authentica-
tion with a keyed hash function. CryptoBytes will
report on future developments.

A Linear Protocol Failure for RSA

With Exponent Three

At the rump session of Crypto ’95, Matthew Franklin
and Michael Reiter of AT&T Bell Laboratories pre-
sented a new weakness of RSA with low encrypting
exponent. This weakness depends on two messages
being encrypted with exponent three with respect
to the same RSA modulus, and on a (non-trivial)
linear relationship being known to exist between the
two messages. In such cases the messages can be
computed efficiently by an attacker that has access
only to the public key, the two ciphertexts, and the
linear relation. This differs from the “small expo-
nent” protocol failure, generalized by Hastad (de-
scribed opposite in The Secure Use of RSA), which
requires that messages be encrypted with respect to
different moduli. It also differs from the “common
modulus” protocol failure, observed by Simmons,
which requires that a single message be encrypted
with different exponents. This weakness can be ex-
ploited to yield passive attacks on protocols that en-
crypt related messages. Examples of such protocols
are a signature sharing protocol for RSA, proposed
by Franklin and Reiter at Eurocrypt ’95, and a key
distribution protocol, proposed by Tatebayashi,
Matsuzaki, and Newman at Crypto '89. This weak-
ness does not affect the encryption of arbitrary unre-
lated messages. =g
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The Secure Use of RSA

Burt Kaliski and Matt Robshaw
RSA Laboratories
100 Marine Parkway, Suite 500
Redwood City, CA 94065-1031

Since its invention over fifteen years ago, the RSA
cryptosystem [21] has been submitted to extensive
scrutiny and analysis. Its continuing resistance to at-
tack has resulted in its being well trusted and used
widely.

One of the most notable features about RSA is its
apparent simplicity and considerable elegance. This
elegance is due in most part to the algebraic frame-
work in which the algorithm is defined. But this
framework can itself be a dangerous environment in
which to practice cryptography. Indeed it is straight-
forward to write down a few mathematical identities
that at first sight seem to threaten the integrity of
RSA when used either for encryption or for the pro-
vision of digital signatures.

As we will see, however, for each of these apparent
threats to RSA there is a simple and practical coun-
termeasure. It is all a matter of using the technology
correctly. In this article we will show how RSA can
be used to its full potential.

The RSA Cryptosystem
RSA is a public-key cryptosystem and digital signa-
ture scheme that was invented in the late 1970s at
MIT by Ron Rivest, Adi Shamir and Len Adleman
[21]. The system depends on modular exponentia-
tion and is defined as follows.

We will denote the public key by (n, ¢) and the pri-
vate key by (n, d). The integer n, which is known as
the modulus, is chosen as the product of two primes
p and q. The integers e and d are exponents and they
are chosen so that ed = 1(mod @(n)) where @n) =

(p-1)(g-1).

Encryption and decryption of a message m can be
described as follows. Using the public key (n, ¢) the
sender of the message computes ¢ = m* mod n and ¢

Burt Kaliski is chief scientist and Matt Robshaw is a research sci-
entist at RSA Laboratories. They can be contacted at burt@rsa.com
or matt@rsa.com.

is the encrypted message. The legitimate receiver uses
the private decryption key (n, d) to compute c? mod n.
The underlying mathematics guarantees that

cd = (m)d = med = m! = m (modn)
and the original message can be recovered.

Closely following the original Diffie-Hellman model
for a public-key cryptosystem [8], the private and
public keys in RSA can be used to provide a digital
signature. Here the digital signature is generated us-
ing the private key (which is known to only one
user) and verification of the signature can be com-
pleted with the corresponding public key. The sig-
nature s of message m with the private key (n, d) is
given by s = m? mod n while public verification of
the signature s can be achieved using (n, e) since the
comparison

3
I~

= 5¢ (mod n)

will hold for a legitimate digital signature and fail
otherwise.

Both encryption and the creation of digital signa-
tures are simple and straightforward operations. The
mathematical structure underpinning the cryptosys-
tem ensures that the link between these operations and
their reverse can be easily established. But other links
can be made and as motivation for what follows we
will make note of two, easily established identities:

(mp«my )¢ = me.me (modn) and

(mare)d = md . r (modn).

We will see that exploitation of these identities and
other properties can lead to attacks on both the gen-
eration of RSA signatures and on RSA encryption.
In this article we will describe these attacks and some
straightforward and practical counter-measures.

Aims of the Attacker

Three consequences of a successful attack on a pub-
lic-key cryptosystem or digital signature scheme such
as RSA might be:

1. recovery of the private key,
2. message decryption, and
3. signature forgery.

... for each of
these apparent
threats to RSA
there is a simple
and practical
counfermeasure.
It is all a matter
of using the
technology
correctly.
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It may well be possible that an attack achieving the
second or third result can be mounted without the
attacker actually recovering the private key. In this
article we consider attacks that might be used to
achieve each of these goals in turn, and give rules of
thumb which prevent the attacks being successful.

We note that in a practical implementation of RSA
there are additional security considerations beyond
those covered here. For instance, the interchange-
ability of signatures and decryption might lead to
unexpected security weaknesses if the same key were
used for both. Additionally, the source of random-
ness for key generation and the storage of the pri-
vate key are vital issues in the secure implementa-
tion of RSA. Suffice it to say that no implementa-
tion of RSA can be considered fully secure unless all
issues, including the system-dependent factors, are
taken into account.

Recovering the Private Key

As a first line of attack, an adversary might take the
public key (n, e) of some user and attempt to recover
the private decrypting (or equivalently the signing)
exponent d. Interestingly, one of the links that has
been established between the RSA cryptosystem and
the difficulty of factoring is based on a number-theo-
retic result predating RSA [16], which can be used
to demonstrate that obtaining a private exponent d
from the public exponent e and the modulus n is as
hard as actually factoring n. In essence, knowledge
of the exponents e and d allows the attacker to fac-
tor the modulus n.

With this connection in mind, we first consider the
most well known (and currently the best) attack that
an adversary might mount on RSA when trying to

recover the private key, namely an attempt to factor
the RSA modulus n.

Factoring

The problem of factoring and its continuing im-
provements are the topic of a great many articles
and papers and we will not attempt to replicate the
information that can be found in three, splendid
articles [2,17,20].

It is generally accepted that RSA numbers composed
of primes p and g of about the same size are among
the hardest to factor for their size. (See, however,

the article by Adi Shamir in this issue of Crypto-
Bytes on using RSA moduli with two primes that are
widely differing in size!) For large enough numbers,
and certainly for the size of numbers we use in today’s
implementations of RSA, the general number field
sieve (GNEFS) is the best “general-purpose” factoring
method. The older quadratic sieve and its variants
are faster below a certain size of modulus (currently
around 116 decimal digits in length [2]). Most im-
portantly however, users of RSA can determine the
current level of factoring ability and make allowances
for a certain amount of future improvement. As a
consequence, general-purpose factoring need not be
a concern to users of RSA if the primes (and hence
the RSA modulus) are chosen to be sufficiently large.

Depending on the form of the primes p and g that
are multiplied together to give the user’s modulus, it
might be argued that “special-purpose” factoring
methods such as Pollard’s p—1 method [18] and super-
encryption attacks [23], which we discuss next, might
end up being faster than using the GNFES. With these
and similar threats in mind, strong primes were intro-
duced so that p and g were chosen to satisfy a variety
of conditions; for instance p might be chosen so that
p—1 has a large factor r and r—1 has a large factor, etc.
These conditions, and similar ones on the form of the
numbers p+1 and g+1 would guarantee that the modu-
lus n resists the special-purpose factoring methods.

The introduction of the elliptic curve method (ECM)
of factoring changed all this [15]. This factoring
method has some probability of success regardless of
the actual form of the prime. As a consequence, the
dominant property for the security of the primes we
use is size. In protecting against the ECM factoring
technique one protects, with a very high probability,
against all special-purpose factoring techniques. In
short, large primes are more important than strong
primes.

One early proposed attack against RSA is called
superencryption. Simmons and Norris [23] observed
that after a sufficient number of repeated encryp-
tions, the original message would eventually be re-
covered. This would lead to an attack on RSA if the
number of encryptions required were small. But this
is not the case if the primes are large and chosen at
random and so while an interesting observation, super-
encryption is not a practical attack. Likewise, the
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observation that p and q being very close together in
numerical value allows the efficient factorization of
n [25], is not relevant to practical security provided
p and q are sufficiently large and chosen at random.

Wiener’s Attack

There is an interesting attack due to Wiener [24]
which allows an attacker to recover the private ex-
ponent in an ingenious way. Wiener shows that a
continued fraction approximation using the publicly
available parameters e and n can provide sufficient
information to recover d. This attack will be efficient
and practical when the private exponent d is small
relative to the RSA modulus; that is when d < n'/4.

This attack is a concern if the private exponent d is
deliberately chosen to be small, perhaps in an at-
tempt to improve the efficiency of decryption or sign-
ing. In general use however, it is unlikely that a small
private exponent will be generated if the public ex-
ponent e is chosen first; when e is small, d is always
large enough to resist this particular attack and if e is
chosen at random, then with an overwhelming prob-
ability, d will be large enough to resist Wiener’s at-
tack. If the private exponent d is chosen, it should
not be too small.

Using Probabilistic Primes

One frequent question is how the security of RSA
might be affected if one of the primes used to compute
the modulus is, in fact, not a prime number after all.

First, the factors of n will be smaller than expected,
and so it may be easier to factor the modulus with
special-purpose factoring methods. Second, except
in the unlikely event that we have mistakenly gen-
erated a so-called “Carmichael number,” decryption
and verification will yield incorrect results for most
messages and signatures, an occurrence which could
be used to reveal the factors of the modulus.

Though a theoretical concern, the possibility of gen-
erating a non-prime is not really a practical issue.
With modern prime generation methods, the prob-
ability that an output is not prime can be made arbi-
trarily small or even eliminated entirely.

Decrypting Messages
While recovering the private exponent d seems to be
difficult provided we generate the key pair appropri-

ately, is there a way to compromise the security of RSA
encryption without recovering the private exponent?

We highlight three concerns, and describe how to
deal with each in turn. Among the theoretically
interesting results that we do not have space to
cover here are those concerned with the protection
offered by RSA encryption for various bits of mes-
sage information. The interested reader can find
more information about this topic in the work of
Alexi et al. [1].

Small Messages

Clearly RSA encryption is not effective on small
messages when the public exponent e is small. In
particular, when ¢ = m¢ < n, m can be recovered from
¢ by ordinary root extraction. In fact this attack can
be extended somewhat even if there has been some
modular reduction by guessing how much reduction
has taken place. Thus this attack extended to ¢ > n
by trial-and-error might still be faster than exhaus-
tive search for m.

But the precaution is obvious. Either the public ex-
ponent ¢ should be large or the messages should al-
ways be large. It is this second suggestion that is the
most useful since a small public exponent is often
preferred. However we have to be careful to ensure
that the large message we use is not merely some
multiple of a known value such as a large power of
two (as would be the case if the message were pad-
ded on the right with zeroes). As we will see, this
would allow an attacker to mount some sophisticated
attacks. So when the public exponent e is small the
messages being encrypted should always be large in
numerical value and not a multiple of some known
value. This can all be achieved by padding the mes-
sage appropriately prior to encryption.

Chosen Ciphertext Attacks
One of the identities we highlighted at the begin-
ning of this article was:

(m=re)d = mdwr (modn).

An attacker might exploit this fact in the following
way. Having intercepted some ciphertext c, the at-
tacker chooses some random number r and computes
r¢ mod n. By sending c * r* mod n to the legitimate

d

receiver, c? = r mod n is recovered which will, in all
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likelihood, appear to be random. If the attacker were
to obtain this decrypted string then the intended
ciphertext could be obtained on multiplication by
r~lmod n.

More far-reaching than obtaining the correct decryp-
tion of a particular message, is a generalization of
this technique by Desmedt and Odlyzko [7]. Since
a chosen ciphertext attack on RSA encryption is
equivalent in effect to a chosen-text attack on the
RSA signature scheme, we shall also see this attack
in the next section.

The attacker asks the user of RSA to decrypt care-
fully chosen ciphertexts and obtains a pool of data
consisting of the decryptions of small primes and cer-
tain other values. Then, when sufficient information
has been accumulated, the attacker can decrypt a
particular encrypted message by multiplying the
ciphertext by a random r¢ and factoring the result
into small primes and other values in the pool. (The
attacker can try another r if unsuccessful.) The de-
cryption of the ciphertext will be the product of the
factors’ decryptions and ! mod n.

While this attack can be more efficient than factor
ing the modulus, certain precautions can be taken to
ensure that it is impractical. However there is already
one lesson we can learn, and that is that an attacker
should not be able to obtain the raw RSA decryption
of an arbitrary value.

Just how practical is a chosen ciphertext attack?
Consider an environment where a subscriber to some
conditional-access service has access to the decryp-
tion equipment but not to the actual keys. In such a
case the subscriber might well be free to interrogate
the decryption unit at will, with ciphertexts of the
subscriber’s own choosing. It would clearly be a se-
curity flaw if the corresponding decryptions were
then directly accessible to the attacker.

Low Exponent Attacks

One class of attacks, perhaps more than any other,
has been the cause of confusion about the correct
and safe use of RSA. These attacks are due to Hastad,
and while the scope and validity of the attacks is not
in question, some have taken the existence of these
attacks as evidence for avoiding low public expo-
nents in an implementation of RSA.

Hastad [12] showed that if an attacker is able to in-
tercept the encryptions of a single message m gener-
ated using several different RSA keys with a com-
mon public exponent e, then it might be possible to
recover m. As a special case, given [ different encrypt-
ions m¢ mod ny, ... , m* mod n; an attacker can solve
for m with the Chinese Remainder Theorem [14].

More generally, given t related encryptions
(a;m+b;)modn,..,(am+b ) modn,

where the a/s and b;s are known and t > e(e+1)/2,
an attacker can solve for m with lattice reduction
techniques. Note that this attack is a concern if the
messages are related in a known way. The use of suf-
ficient pseudorandom padding prior to encryption
will make such an attack impossible to mount in
practice, and we will describe one method for doing
this in the accompanying box. Messages that are re-
lated in a known way should not be encrypted with
many RSA keys.

Some very recent work by Franklin and Reiter [10]
(see Algorithms Update in this issue of CryptoBytes)
has highlighted a potential problem when related
messages are encrypted under the same RSA key
with a low exponent. This work should not be con-
fused with that of Hastad but the problem they inge-
niously exploit relies on the fact that the various
components required for their attack are once again
related in a known way. The use of random padding,
as we have already seen, will destroy any known re-
lation between messages. Related messages should
not be encrypted with the same RSA key.

Forging Signatures

The problem facing an attacker who is attempting
to forge an RSA digital signature is to construct a
valid signature for a new message while observing
the signatures of other messages that might be known
or chosen.

Among the attacks we will consider here are a simple
chosen message attack and existential forgery as well
as the signature version of the attack on encryption
due to Desmedt and Odlyzko. We do not consider
issues such as which hash functions are more suit-
able for use with the RSA signing operation. There
are a great many possible designs for hash functions
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to choose from [19] and while those based on modu-
lar arithmetic might offer certain implementation
advantages (since they might rely on much the same
operations as are already required for signing),
Coppersmith has demonstrated attacks on one such
proposal [5]. Extreme care should be taken before
considering a hash function based on modular arith-
metic for use with RSA signatures.

Chosen and Known Message Attacks

Just as there was a chosen ciphertext attack on
encryption, there is the following chosen message
attack on raw RSA signatures. As with decryption,
once given the signature of m’ = mr¢ mod n, where
7 is random, an attacker can obtain the signature of
m since md = (m’)4r-! (mod n). Again, the lesson to
learn is simple; it should not be possible to obtain a
raw RSA signature on an arbitrary value.

Using the mathematical identities at the beginning
of the article, it is always possible to compute new
message-signature pairs (m, s) of the form

t
m=re¢ rl mg mod n
i=1

t
s=r[] 58 modn
i=I

where (my, s;), ..., (m,, s,) are previous message-
signature pairs, and r and q, ..., q, are arbitrary.
Since the resulting message m is not known in ad-
vance, this is an “existential” forgery; the signature
exists but the message may or may not be useful.
However by selecting messages m; to be signed, an
attacker can derive a signature of a given message m
in a chosen message attack. Again, this can be
avoided by padding in a way that destroys the alge-
braic connections between messages.

While a good padding scheme will destroy the algebraic
properties which allow these attacks, it is worth point-
ing out that de Jonge and Chaum [6] have extended
such basic attacks to demonstrate vulnerabilities in
an early proposal for a simple padding scheme.

Also note that while the algebraic properties we ex-
ploit appear to have a negative impact on the use of
RSA, we should point out that this “attack” can be
used constructively to provide what is called blind-
ing [4] in anonymous payment systems!

Desmedt and Odlyzko’s Attack and a Variant

The attack of Desmedt and Odlyzko on encryption
applies equally to signatures. Perhaps it is more prac-
tical when applied to signature forgery rather than
ciphertext decryption, since it might be easier to de-
mand and receive the signature on a variety of mes-
sages instead of demanding decryptions for a range
of ciphertexts. A variant of this attack can be par-
ticularly effective when the messages being signed
are small (for instance if they are generated as the
output from some message-digest algorithm) unless
care is taken.

Essentially, the attack of Desmedt and Odlyzko (for
both encryption and signatures) relies on factoring
the message into small primes and values near Vn.
An interesting adaptation of this attack (see notes
in Section 8.1 of [22]) applies to the case when the
numerical input to the signing algorithm is always
relatively small. In this adaptation, the attacker
factors the particular message into small primes (this
may or may not succeed); the signature on the mes-
sage equals the product of the factors’ signatures. The
attacker obtains the primes’ signatures from appro-
priate combinations of signatures on other messages
whose factors are small. As opposed to when the in-
put is as large as the modulus, values near Vn are not
needed. The probability of success will therefore de-
pend on the size of the message, not on the size of

the RSA modulus.

Messages to be signed should thus be as large as the
RSA modulus and, for similar reasons as for encryp-
tion, not a multiple of some known value.

RSA Block Formats

Throughout this article we have considered one po-
tential attack after another, in each case highlight-
ing its prevention. Is there a standard way to adopt
these safeguards? Is there a way that implementa-
tions of RSA can communicate with each other and
be assured of a basic level of security?

There are a variety of practical methods for address-
ing the different recommendations on encryption
and signatures. For instance, PKCS #1 [22] (see
accompanying box) is a simple, ad-hoc design for
protecting RSA encryption and signatures on mes-
sage digests; it is easy to implement and addresses
each of the attacks described above in a heuristic
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manner. The amount of padding in each block is at
least 11 bytes.

ISO/IEC 9796 [13] provides a mathematical design
for protecting signatures and also gives message re-
covery: it is intended for signatures on arbitrary data
as well as message digests, and the data or message
digest can be recovered from the signature. ISO/IEC
9796 is somewhat more complex than PKCS #1, and
about half of each block is padding, but the math-
ematical motivation is well justified [11].

The construction of Bellare and Rogaway [3], also
known as Optimal Asymmetric Encryption Padding,
provides a cryptographic design for protecting en-
cryption. It involves hash functions and pseudoran-
dom generators and is the most complex of the three
approaches. However, it has the benefit that its se-
curity can be directly related to the quality of the
hash function or pseudorandom generator. The
amount of padding is 16 bytes or more, depending
on the level of security.

The whole issue of defining block formats is, in itself,
an interesting and delicate problem, and deserves
more attention than we can give in this article.
Instead we refer the reader to the relevant references
for additional information.

Conclusions

In this article, we have provided an overview of the
major attacks that have resulted from more than 15
years of cryptanalysis. While many of these attacks
would be a serious problem if mounted on a raw form
of RSA, we have seen that there is always a practical
and efficient countermeasure.
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and compares the result to the ciphertext. Since the opponent
must guess the pseudorandom string in addition, the difficulty

increases by at least a factor of 264,

For protecting RSA signatures, the signature block format is
slightly different and has the following form:

00,| 01,| ff,... ff, | 00, D

Again 00,, 01, and ff, are byte values in hexadecimal nota-
tion, and D is the data to be signed, which must be a message
digest. There must be at least eight ff, bytes.

The byte 00, again ensures that the block is arithmetically
less than the RSA modulus. The byte 01, and the ff, padding
prevent the variant of Desmedt and Odlyzko’s attack on small
messages and the overall structure of the block prevents vari-
ous multiplicative attacks.

Just as for encryption, there is at least a 2¢4 increase in work
effort for a variety of attacks. For instance, known and cho-

sen message forgery is 24 harder since an opponent can
only obtain “raw” RSA signatures on less than one in
every 2% possible messages. The opponent must repeat-
edly randomize the message to be signed to find one

whose block format is correct.

The PKCS #1 block format for signatures is intended
only for signatures on the message digests of messages.
Some potential attacks arise if the data D is arbitrary,
since an opponent can select the value of D so that the
resulting signature block has small prime factors, or per-
haps is even a natural power. However, when the data
D is a message digest, which is effectively a pseudoran-
dom value, these attacks are not a concern; for applica-
tions where a message digest is signed with RSA, the
format is adequate.

In applications where data is signed directly, a format
such as [SO/IEC 9796 designed specifically for signatures
with “message recovery” is preferable. =g

THE TECHNICAL NEWSLETTER OF RSA LABORATORIES — AUTUMN 1995 E CRYPTOBYTES




Digital
time-stamps
increase the
longevity of

digitally-signed
records.

FREQUENTLY ASKED QUESTIONS

How Do Digital Time-Stamps
Support Digital Signatures?

Answered by

Stuart Haber, Burt Kaliski and Scott Stornetta

Consider two questions that may be asked by a com-
puter user as he or she views a digital document or
on-line record. (1) Who is the author of this record
— who wrote it, approved it, or consented to it?
(2) When was this record created or last modified?

In both cases, the question is one about exactly this
record—exactly this sequence of bits—whether it
was first stored on this computer or was created some-
where else and then copied and saved here. An an-
swer to the first question tells who & what: who
approved exactly what is in this record? An answer
to the second question tells when & what: when
exactly did the contents of this record first exist?

Both of the above questions have good solutions. A
system for answering the first question is called a digi-
tal signature scheme. Such a system was first proposed
in [2] and there is a wide variety of accepted designs
for an implementation of this kind of system [4,5].

A system for answering the second question is called
a digital time-stamping scheme. Such systems were de-
scribed in [1,3], and an implementation is commer-
cially available from Surety Technologies (http://
www. surety.com/).

Any system allowing users to answer these questions
reliably for all their records must include two differ-
ent sorts of procedures. First, there must be a certifi-
cation procedure with which (1) the author of a
record can “sign” the record, or (2) any user can fix
a record in time. The result of this procedure is a
small certifying file, a certificate if you will, that cap-
tures the result of this procedure. Second, there must
be a wverification procedure by which any user can
check a record and its accompanying certificate to

Stuart Haber is a research scientist in the Security Research Group
at Bellcore, Burt Kaliski is chief scientist at RSA Laboratories, and
W. Scott Stometta is Chairman of Surety Technologies. Surety
Technologies was founded by Stometta and Haber in 1994 as
a spin-off from Bellcore, with a mandate to commercialize the digi-
tal time-stamping technology developed by Bellcore. The authors
can be contacted at stuart@bellcore.com, burt@rsa.com and
scotts@surety.com.

make sure it correctly answers (1) who and what? or
(2) when and what? about the record in question.

The “certificate” returned by the certification pro-
cedure of a digital signature system is usually called a
signature; it is a signature for a particular signer
(specifying whom) and for a particular record (speci-
fying what). In order to be able to “sign” documents,
a user registers with the system by using special soft-
ware to compute a pair of numbers called keys, a
public key and a corresponding private key. The pri-
vate key should only be available to the user to whom
it belongs, and is used (by the certification or “sign-
ing” procedure) in order to sign documents; it is by
employing the user’s private key that the signature
and the record are tied to that particular user. The
public key may be available to many users of the
system, and is used by the verification procedure.
That is, the verification procedure takes a particular
record, a particular user’s public key, and a putative
signature for that record and that user, and uses this
information to check whether the would-be signa-
ture was correctly computed using that record and
the corresponding private key.

Special computational methods are employed for
signing documents and for verifying documents and
signatures; when these methods are carefully imple-
mented, they have the remarkable property that the
knowledge of a user’s public key does not enable an
attacker or hacker to figure out the user’s correspond-
ing private key. Of course, if, either through care-
lessness or deliberate intent, someone else—a hacker,
for example—gains access to the user’s private key,
then this person will be able to “forge” the legiti-
mate user’s signatures on documents of the hacker’s
choice. At that point, even the value of legitimately
signed records can be called into question.

The “certificate” returned by the certification pro-
cedure of a digital time-stamping system is a certifi-
cate for a particular record (specifying what) at a
particular time (specifying when). The procedure
works by mathematically linking the bits of the
record to a “summary number” that is widely wit-
nessed by and widely available to members of the
public—including, of course, users of the system.
The computational methods employed ensure that
only the record in question can be linked, according
to the “instructions” contained in its time-stamp
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certificate, to this widely witnessed summary num-
ber; this is how the particular record is tied to a par-
ticular moment in time. The verification procedure
takes a particular record and a putative time-stamp
certificate for that record and a particular time, and
uses this information to validate whether that record
was indeed certified at the time claimed by checking
it against the widely available summary number for
that moment.

Two features of a digital time-stamping system are
particularly helpful in enhancing the integrity of a
digital signature system. First, a time-stamping sys-
tem cannot be compromised by the disclosure of a
key. This is because digital time-stamping systems
do not rely on keys, or any other secret information,
for that matter. Second, following the technique
introduced in [1], digital time-stamp certificates can
be renewed so as to remain valid indefinitely.

With these features in mind, consider the following
situations.

It sometimes happens that the connection between
a person and his or her public signature key must be
revoked—for example, if the user’s secure access to
the private key is accidently compromised; or when
the key belongs to a job or role in an organization
that the person no longer holds. Therefore the per-
son-key connection must have time limits, and the
signature verification procedure should check that
the record was signed at a time when the signer’s
public key was indeed in effect. And thus when a
user signs a record that may be checked some time
later—perhaps after the user’s key is no longer in
effect—the combination of the record and its signa-
ture should be certified with a secure digital time-
stamping service.

There is another situation in which a user’s public
key may be revoked. Consider the case of the signer
of a particularly important document who later
wishes to repudiate his signature. By dishonestly re-
porting the compromise of his private key, so that all
his signatures are called into question, the user is
able to disavow the signature he regrets. However, if
the document in question was digitally time-stamped
together with its signature (and key-revocation re-
ports are time-stamped as well), then the signature
cannot easily be disavowed in this way. This is the
recommended procedure, therefore, in order to pre-

serve the non-repudiability desired of digital signatures
for important documents.

The statement that private keys cannot be derived
from public keys is an over-simplification of a more
complicated situation. In fact, this claim depends on
the computational difficulty of certain mathemati-
cal problems. As the state of the art advances—both
the current state of algorithmic knowledge, as well
as the computational speed and memory available in
currently available computers—the maintainers of a
digital signature system will have to make sure that
signers use longer and longer keys. But what is to
become of documents that were signed using key
lengths that are no longer considered secure? If the
signed document is digitally time-stamped, then its
integrity can be maintained even after a particular
key-length is no longer considered secure.

Of course, digital time-stamp certificates also depend
for their security on the difficulty of certain compu-
tational tasks concerned with so-called one-way hash
functions. (All practical digital-signature systems de-
pend on these functions as well.) Those who main-
tain a secure digital time-stamping service will have
to remain abreast of the state of the art in building
and in attacking one-way hash functions. Over time,
they will need to upgrade their implementation of
these functions, as part of the process of renewal [1].
This will allow time-stamp certificates to remain
valid indefinitely.
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The 1996 RSA Data Security
Conference

The 1996 RSA Data Security Conference will
be held January 17-19 in the Fairmont Hotel,
San Francisco. First held in 1991, this annual
conference is expected to attract more than
1,000 participants and provides an excellent
opportunity for business people, academic cryp-
tographers and representatives of government
to gather and debate the technology and busi-
ness issues facing the industry.

Spread over three days, there will be a wide
range of seminars, tutorials and presentations.
Many of the presentations will be focused on
the commercial applications of modern crypto-
graphic technology, with an emphasis on Public
Key Cryptosystems, but there will also be simul-
taneous tracks for developers, cryptographers
and analysts from which attendees can pick and
choose the talks they wish to attend.

There are plans for several open panel discus-
sions. On the final day, the focus of these dis-
cussions will be on electronic commerce and
doing business on the Internet. Meanwhile
Washington will be the topic for discussion on
the second day, with issues ranging from CLIP-
PER, FORTEZZA and key escrow, to export
control. Following the keynote address and
company announcements on the first morning,
a cryptographer’s expert panel will provide an
excellent opportunity for attendees to direct
their questions directly to some of the leading
figures in cryptographic research.

Over the years, the RSA Data Security Confer-
ence has proved to be a great opportunity for
vendors, developers and specialists to meet, and
like previous years it is expected to be filled to
capacity very soon. More information can be
found on RSA’s web page (http:/fwww.rsa.com/)
or by contacting the conference organizer,
Layne Kaplan Events, at 415/340-9300.

CRYPTOGRAPHIC

100 MARINE PARKWAY
REDWOOD CITY
CA. 94065-1031
TEL 415/595-7703
FAX 415/595-4126
rsa-labs@rsa.com

Copyright © 1995 RSA Laboratories, a division of RSA Data Security, Inc. All rights reserved.

In this issue:

* RSA for
Paranoids

e Collisions
in MD4

e The Secure
Use of RSA

e Digital Time
Stamps

For subscription
information,
see page 2 of
this newsletter.

PRESORT
FIRST CLASS
U.S. POSTAGE

PAID

MMS, INC




