
Page 1 of 10 © Exurity Inc., 2003 April 11, 2003

Protection Against Exploitation of Stack And Heap Overflows

Yinrong Huang

Exurity Inc., Canada

We welcome you to utilize the concept presented in this
paper. We also sincerely appreciate your generous

financial contribution to our research.

For updated info, please check
http://members.rogers.com/exurity/

Written on April 11, 2003 and Copyright © 2003 Yinrong Huang

http://members.rogers.com/exurity/
http://members.rogers.com/yinrong/

Page 2 of 10 © Exurity Inc., 2003 April 11, 2003

Protection Against Exploitation of Stack And Heap Overflows

Yinrong Huang
Exurity Inc., Canada

1 Introduction
Reports of buffer overflow vulnerability pop up almost everyday on SecurityFocus’ buqtraq
mailing lists (1). Vendors tried, sometimes desperately, to patch up their software holes before
their software vulnerabilities were maliciously exploited.

My previous article describes a mechanism to protect against the malicious exploitation, like
SQL Slammer worm, of overflowed stack by inserting a breakpoint opcode 0CCh onto the stack
before RET (2). This article addresses how to protect against off-by-one exploitation of
overflowed stack, how to repair the heap allocation and free scheme to catch the exploitation,
potentially malicious, of the overflowed heap (3), how to protect against overflowed structured
exception handling (SEH) frame like Code Red (5), and how to refuse RET to defend against
brute force exploitation shown in WebDAV exploitation (6).

2 Protection Against Off-by-one Exploitation
Upon entering a called C function on x86-based computers, execution of code usually begins
with prolog code such as:

Push EBP
Mov EBP, ESP

Before leaving the called C function, execution of code usually ends with epilogue code such as
(or opcode LEAVE):

Mov ESP, EBP
Pop EBP
RET

0

P0

4 8- 300

Stack

Figure 1 Normal Stack Usage For Two Function Calls with
"mov esp, ebp; pop ebp" epilogue scheme

Notice EBP' = - 4

REBP

-4-80

R'

Function B Stack Usage

EBP'

Function C Stack Usage

cBuffer

P0'

Figure 1 illustrates the normal stack usage for a serial C code below. Without deliberate
overflowing of the cBuffer local variable in FunctionC, the code execution goes smoothly.

/* cBuffer is not properly checked for boundary */

Page 3 of 10 © Exurity Inc., 2003 April 11, 2003

FunctionC(parameter0’)
{

char cBuffer[0x20]
…

}

FunctionB(parameter0)
{

FunctionC(parameter0);
…

}

FunctionA(void)
{

FunctionB(par0);
..

}

However, Figure 2 shows the cBuffer is deliberately overflowed until it reaches the first byte or
least significant byte of original EBP register on stack. In other words, EBP’ becomes rounded
down to (original EBP’ & 0xFFFFFF00). Before the FunctionB returns to calling
FunctionA, the epilogue tries to restore ESP with EBP. Because EBP has been rounded down,
then the stack pointer ESP is moved accordingly to point to the overflowed cBuffer area and a
new return address is provided to run the malicious code. The concept of off-by-one exploitation
is quite delicate and memory space limiting. The real implementation or exploitation in the wild
world is unknown.

0

P0

4 8- 300

Stack

Figure 2 An Off-by-one exploitation of stack overflow with EBP'
being rounded down to point to the overflowed area.

Notice EBP' = EBP' & 0xFFFFFF00

REBP

-4-80

R'

Function B Stack Usage

EBP'

Function C Stack Usage

cBuffer

P0'

One method to protect against off-by-one exploitation scheme is to utilize the debug
methodology used by Visual C/C++ studio, i.e. to fill the used and to-be-discarded stack space
with 0CC or 00 byte before RET in such a way as follows:

…
Push EAX
Push edi
Lea edi, [esp+8]
Mov ecx, (size of stack space used) >> 2

Page 4 of 10 © Exurity Inc., 2003 April 11, 2003

Mov eax, 0ccCCccCCh ; or 0h
Rep stosd
Pop edi
Pop eax
Mov ESP, EBP
Pop EBP
RET

The purpose is to protect against the off-by-one exploitation, if it does happen, from running a
malicious code and provide a chance to debug and plug this overflow software hole. Figure 3
illustrates the protection mechanism. Little performance degradation is expected for this
protection mechanism.

0

P0

4 8- 300

Stack

Figure 3 An Off-by-one exploitation happened. However, method of
filling used stack memory space with 0CC or 00h prevents the piece
of malicious code from running. Notice EBP' = EBP' & 0xFFFFFF00

REBP

-4-80

R'

Function B Stack Usage

EBP'

Function C Stack Usage

cBuffer

P0'

3 Protection Against Heap Overflow Bugs And Exploitation
As a software engineer, you might have come across situations where memory trampling
happened somehow and nobody knew why it happened. Runtime double free bugs (4) and heap
overflow exploitation (3) could allow a chunk of malicious code to be executed. Figure 4
illustrates a normal heap structure with two memory blocks allocated.

Control
B0

Heap

Figure 4 Heap Blocks Used by Win2k And Borland C++ Run-time Library
Control Block is BLUE.

6432

Buffer BBuffer A

Control
A

If the usage of buffer A is mal-programmed and the buffer is overflowed to the nearby buffer
control B as Figure 5 illustrates, then the subsequent manipulation of buffer B such as free or
realloc function calls could “allow an unauthenticated, remote attacker with read-only access
to execute arbitrary code, alter program operation, read sensitive information, or cause a denial
of service” (4).

Page 5 of 10 © Exurity Inc., 2003 April 11, 2003

Control
B0

Heap

Figure 5 Buffer A is overflowed to the control structure B

6432

Buffer BBuffer A

Control
A

Then, how do we protect against heap-based overflow exploitation? The following is an answer
to solving the heap-based overflow and helping debug heap-based memory trampling during
software development life cycle.

3.1 Global Initialization And Heap Control Structure

The heap control structure (32-bit CPU version) could be defined such as:

typedef _HEAP_CONTROL
{

U32 anchor; /* unsigned int 32-bit or 64-bit */
more structure members

} HEAP_CONTROL, * PHEAP_CONTROL;

During the global initialization routine, the globalRandom is initialized to provide a random
number.

U32 globalRandom = 0;

….
GlobalRandom = rand();
…

3.2 Allocation Of A New Heap Block

For example, the malloc or calloc function can be programmed as such:

• Check the requested size against limits;
• If requested size is allowed, then manipulate the memory control chains to get a block of

memory with size as:
ROUND_UP_ALIGNMENT(sizeof(HEAP_CONTROL) + requested size))

• Let’s assume the (PHEAP_CONTROL) pAddr point to the free memory block retrieved.
The HEAP_CONTROL structure is initialized as follows. The op can be add, subtract,
and XOR etc.
pAddr->anchor = ((U32) pAddr) op globalRandom

• More initialization before returning pointer to the buffer after the buffer control structure.

Page 6 of 10 © Exurity Inc., 2003 April 11, 2003

3.3 free, realloc and integrity-check heap memory

During the manipulation of heap memory such as free, realloc or heap integrity check
algorithm (either run-time or postmortem debug), the (void *) memblock parameter can be
checked as such (32-bit version):

void free(void * memblock)
{

PHEAP_CONTROL pHeap;
if ((U32) memblock < sizeof(HEAP_CONTROL))
{

error("invalid memblock pointer");
SystemPanic(); /* report this problem */

/* so that it can be fixed */
}

pHeap = (PHEAP_CONTROL)
((U32) memblock - sizeof(HEAP_CONTROL));

if (((U32) pHeap op globalRandom) !=
pHeap->anchor)

{
DumpRelavantInfoForDebug(); /* dump info */
SystemPanic(); /* report this problem */

/* so that it can be fixed */
}

pHeap->anchor = 0;

normal free continue;

released memory block can be zeroed out or filled with 0CC
byte depending on how paranoid one wants to be

}

The purpose of the anchor member in the HEAP_CONTROL structure is to utilize the address
structure itself to determine whether it has been overflowed. The globalRandom introduces a
randomness to make the specific-memory-block-directed overflowing impossible. Even if the
heap control structure is overflowed, it is very unlikely that it will cause any harm except one
shot of DoS for this application due to this anchoring mechanism.

This anchoring technique can also be applied to a memory block, either a data structure or some
other critical info, to protect against being overflowed by misuse or abuse of preceding memory
blocks. Obviously, this technique is very helpful as well for software developers in chasing
memory trampling or overflowing bugs, and locating double-free bugs during normal
development cycles.

Page 7 of 10 © Exurity Inc., 2003 April 11, 2003

4 Protect Against Overflowed Exception Handling Frame Like Code Red

One method to protect against overflowed structured exception handling frame, whether stake-
based or heap-based, is to include an anchor as the first member of the structured exception
handling (SEH) structure. During the initialization, the anchor in the structure is initialized as
such:

pStructure->anchor =
((U32) pStructure) op globalRandom;

During the exception handling, the operating system checks the integrity of the SEH structure as
the section 3.3 illustrates before it transfers the rein to the SEH routine. Even if the SEH
structure is overflowed as Code Red did to Microsoft IIS, the malicious code will not be
executed due to the fact the malicious code cannot figure out the exact result processed from the
SEH address and the system random number.

5 Refuse To RET To Defend Against Brute Force Exploitation
My previous paper addressed the exploitation mechanism used by SQL Slammer worm by
inserting 0CCh opcode(s) onto the to-be-discarded stack space used normally for parameter
passing to trap the “jmp/call ESP” exploits (1). However, it does not address the brute force
exploitation of RET addresses seen in WebDAV exploitation. The WebDAV exploitation utilizes
the unchecked boundary overflow during the Unicode conversion of abnormally long data. Some
exploit codes posed on the Internet utilize a brute force return address mechanism to redirect
normal execution flow to the exploit code.

Then, we can take advantage of the anchoring mechanism to halt before RET if the program
detects an overflowed stack.

5.1 Code Generation Utilizes Anchoring Mechanism
For a normal function, either C or Pascal-style, the prologue would be like the following to place
the globalRandom value just below the return address.

Push EBP
Push EDI
Push ESI
Push EBX
Push DWORD PTR [address of globalRandom] ; or push ESP
Mov EBP, ESP
….

Then, the following epilogue code would check whether the return address is overflowed and
replaced.

Mov ESP, EBP
pop ecx
cmp [address of globalrandom], ecx; or cmp esp, ecx

Page 8 of 10 © Exurity Inc., 2003 April 11, 2003

jz goret
db 0cch ; single-step exception if overflowed

goret:
pop EBX
pop ESI
pop EDI
pop EBP
ret ; or ret x

5.2 Diagram Illustration On This Mechanism
Figure 6 illustrates the placement of an anchor below the RET address along with saved registers
(or below a block of data on stack or a heap control structure mentioned above) in the prologue
code as a detection mechanism.

0

stack

Figure 6 An anchor is placed below saved registers and
the RET address to detect potential overflow.
Anchoring Data (globalRandom value) in Blue

64

RET
Address

605C

Potential Overflow

68 6C 70 74

EBX ESI EDI EBP
Anchor

Figure 7 illustrates the utilization of the anchor value before RET to halt the execution of code if
the stack has been overflowed.

0

stack

Figure 7 Code Execution Halts When Return Address is Overflowed
Overflowing data in RED

64

RET
Address

605C

Overflow Direction

68 6C 70 74

Anchor
Washed

Away

With this mechanism implemented, it is more convenient than the method published earlier (1)
and will not have a library compatibility problem and have a stronger protection.

6 Conclusion
The fundamental vulnerability of overflow exploitation code lies in the fact the overflow
happens just like water runs on the prairie. It does not jump! Once uniquely positioned anchors
are washed away, then it is certain that overflowing happened!

The off-by-one exploitation of overflowed stack can be prevented by utilization of the debug
methodology to fill the used, to-be-discarded, stack memory space with 0 or 0CC byte. With the

Page 9 of 10 © Exurity Inc., 2003 April 11, 2003

anchor mechanism illustrated in Figure 6 and Figure 7 implemented, it is unnecessary to fill the
to-be-ignored stack with 0 or 0CC byte any more.

The heap manipulation such as malloc or free etc. functions can be improved to include an
anchor member in the heap control structure to utilize the address of the structure itself to protect
against the heap-overflowed exploitation or help debug memory trampling during normal
software development cycle. This anchoring mechanism can be applied to other programming
areas for protection against overflowing as well. However, this mechanism would not protect
against address-specific overwriting such as format string bugs.

The anchoring mechanism can used to protect against the exploitation of Structured Exception
Handling like Code Red to Microsoft IIS because the overflowed code cannot determine the
exact result of the SEH address and the system random number.

The anchoring mechanism also enables the normal execution of code to halt on the brink of RET
if it detects the return address is overflowed to defend against brute-force exploitation
mechanism seen in the WebDAV and others.

For a simplified version of anchoring mechanism, the anchor has to be the first member of a
structure or occupies the first few bytes of a memory block at its lowest address, and is initialized
with the system random number and verified against the random number during runtime
validation.

Protection mechanisms do have a little, even though minimal, impact on the runtime
performance. Even if software engineers wrote solid, bug-free code, it is still beneficial to have
protection mechanisms implemented against unknown situations. In other words, protection
mechanism implemented is still better than a sense of security presumed, I believe.

7 Reference

1. http://www.securityfocus.com/archive/1
2. http://www.virusbtn.com/index.xml
3. http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt
4. http://www.cert.org/advisories/CA-2003-02.html
5. http://www.peterszor.com/blended.pdf
6. http://www.symantec.com/avcenter/security/Content/3.17.2003.html

http://www.securityfocus.com/archive/1
http://www.virusbtn.com/index.xml
http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt
http://www.cert.org/advisories/CA-2003-02.html
http://www.peterszor.com/blended.pdf
http://www.symantec.com/avcenter/security/Content/3.17.2003.html

Page 10 of 10 © Exurity Inc., 2003 April 11, 2003

About Author

Yinrong Huang was trained as a biologist and began his computer programmer career
by self-studying assembly language for Intel. He has worked on real operating systems
such as Windows, Unix to real-time operating system such as VxWorks and wrote
device drivers for Solaris, VxWorks and Windows. He wrote Board Suport Package,
boot-up firmware as well as application. He is familiar with Intel x86, PPC, Hitachi SH3,
MIP and Sparc CPU architectures and CPCI, PCI, and 1394 bus architectures. His
programming languages include assembly, C/C++, TCL/TK, Perl, Forth, and scripts.

If you finish reading his paper and want to offer him a research and/or programming
position in your company or offer him financial funding into his research or license his
self-protection and other security-related programming products and concept, you are
welcome to contact him at:

Yinrong@rogers.com

Thanks for reading.

mailto:Yinrong@rogers.com

	Introduction
	Protection Against Off-by-one Exploitation
	Protection Against Heap Overflow Bugs And Exploitation
	Global Initialization And Heap Control Structure
	Allocation Of A New Heap Block
	free, realloc and integrity-check heap memory

	Protect Against Overflowed Exception Handling Frame Like Code Red
	Refuse To RET To Defend Against Brute Force Exploitation
	Code Generation Utilizes Anchoring Mechanism
	Diagram Illustration On This Mechanism

	Conclusion
	Reference
	About Author

