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1 Introduction

This report nominates the cipher SAFER+ for use in the Advanced Encryp-
tion Standard (AES). The proposed cipher SAFER+ is based on the existing
SAFER family of ciphers, which comprises the ciphers SAFER K-64, SAFER
K-128, SAFER SK-64, SAFER SK-128, and SAFER SK-40. The block size
of all the ciphers in the existing SAFER family is 64 bits, while the user-
selected-key length is 40 or 64 or 128 bits as indicated in the name of the
particular cipher.

The ciphers in the existing SAFER family are non-proprietary ciphers and
were designed by Prof. James L. Massey of the ETH Zurich (Swiss Federal
Institute of Technology, Zurich) at the request of Cylink Corporation. The
first of these ciphers, SAFER K-64, was publicly announced at the Dec. 9-
11, 1993, Fast Software Encryption workshop in Cambridge, England [1].
The other ciphers in the SAFER family differ from SAFER K-64 only in the
key schedules that they use and in the recommended number of encryption
rounds to be used. The name “SAFER” was originally chosen by Massey as
an acronym for “Secure And Fast Encryption Routine”.

The proposed cipher SAFER+ offers substantial improvements over the
previous ciphers in the SAFER family, which is one of the grounds for choos-
ing the name SAFER+ for this cipher. The name SAFER+ also serves to
distinguish the proposed cipher from those in the existing SAFER family.
The improvements incorporated in SAFER+ were developed by Massey to-
gether with Prof. Gurgen H. Khachatrian (Academy of Sciences, Armenia)
and Dr. Melsik K. Kuregian (Academy of Sciences, Armenia). SAFER+
provides for a block size of 128 bits for the plaintext and ciphertext and ac-
commodates three different user-selected-key lengths, namely 128, 192 and
256 bits.

This nomination is structured as follows. In Section 2, we provide a com-
plete description of the SAFER+ encrypting, decrypting and key—schedule
algorithms. In Section 3, we explain in detail the rationale for the design of
SAFER+4+. Section 4 documents the computational efficiency of SAFER+ for
both software and hardware implementations. The cryptographic strength
of SAFER+ and certain analyses are described in Section 5. The advantages
and limitations of SAFER+ are indicated in Section 6. The non-proprietary
status of SAFER+ is asserted in Section 7. The final Section 8 lists the
diskettes included with this nomination.



2 Specification of the SAFER+ Algorithm

2.1 System Specification of the SAFER+ Algorithm

The general encryption and decryption structure of the SAFER+ algorithm
is shown in Fig. 1.

As indicated in Fig. 1, the input for encryption is the plaintext block of 16
bytes. (The convention used in this proposal for numbering bytes and bits is
the same as that in the Data Encryption Standard [2], i.e., byte 1 is the most
significant [or leftmost] byte in the block and byte 16 is the least significant
[or rightmost] byte. Similarly, bit 1 is the most significant bit of a byte and
bit 8 is the least significant bit.) The plaintext block then passes through
r rounds of encryption where r is determined by the key length chosen for
encryption in the following manner:

e if key length = 128 bits, then r = 8 rounds.
e if key length = 192 bits, then » = 12 rounds.

e if key length = 256 bits, then » = 16 rounds.

Two 16-byte round subkeys are used within each round of encryption. These
round subkeys (K7, K, ..., Ks,) are determined from the user-selected key K
according to a key schedule described below. Finally, the last round subkey
Ky,y1 is “added” to the block produced by the r rounds of encryption in the
manner that bytes 1, 4, 5, 8, 9, 12, 13, and 16 are added together bit-by-
bit modulo two (the bitwise “exclusive-or” operation) while bytes 2, 3, 6, 7,
10, 11, 14 and 15 are added together modulo 256 (“byte addition”). This
“addition” of round subkey Ks,, constitutes the output transformation for
SAFER+ encryption and produces the ciphertext block of 16 bytes.

As indicated in Fig. 1, the input for decryption is the ciphertext block of
16 bytes. Decryption begins with the input transformation that undoes the
output transformation in the encryption process. In the input transforma-
tion, the round subkey K5, is “subtracted” from the ciphertext block in the
manner that the round subkey bytes 1, 4, 5, 8, 9, 12, 13, and 16 are added
together bit-by-bit modulo two (the bitwise “exclusive-or” operation) to the
corresponding ciphertext bytes (because modulo-two addition and subtrac-
tion coincide) while round subkey bytes 2, 3, 6, 7, 10, 11, 14 and 15 are
subtracted modulo 256 (“byte subtraction”) from the corresponding cipher-
text bytes. The result of this “subtraction” is the same 16-byte block as was
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produced from the r rounds of encryption before the output transformation
was applied. This block then passes through the r rounds of decryption,
round 1 of which undoes round r of encryption, round 2 of which undoes
round r» — 1 of encryption, ..., and round r of which undoes round 1 of
encryption to produce the original plaintext block. Note that the round keys
for decryption are the same as those for encryption but are used in reverse
order.

2.1.1 SAFER+ encryption round

The details of one round of encryption with SAFER+ are shown in Fig. 2.
The first operation within round 7, 1 < < r, is the “addition” of the round
subkey K9;_1 to the 16-byte round input in the manner that bytes 1, 4, 5, 8,
9, 12, 13, and 16 are added together bit-by-bit modulo two while bytes 2, 3,
6, 7, 10, 11, 14 and 15 are added together modulo 256. The 16-byte result
of this “addition” is then processed by a nonlinear layer in the manner that
the value x of byte j is converted to 45* mod 257 for bytes j = 1, 4, 5, §,
9, 12, 13, and 16 (with the convention that when x = 128 then 45'% mod
257 = 256 is represented by 0), while the value = of byte j is converted to
log,s () for bytes j = 2, 3, 6, 7, 10, 11, 14 and 15 (with the convention that
when z = 0 then the output log,;(0) is represented by 128). The round key
K5; is then “added” to the output of the nonlinear layer in the manner that
bytes 2, 3, 6, 7, 10, 11, 14 and 15 are added together bit-by-bit modulo two,
while bytes 1, 4, 5, 8, 9, 12, 13, and 16 are added together modulo 256. The
16-byte result of this “addition”

X = [551,552, T3, T4, X5, L6, L7, L8y L9y L10, L11, 9612,5513,5514,5515,5516]

is then postmultiplied by the matrix M modulo 256 to give the 16-byte round
output

Yy = [y17y2, Y3, Y4, Ys, Ye, Y7, Y8, y97y107y11,y12,y13,y14,y15yy16]

in the manner

y =xM



where M is the 16 x 16 matrix

2 2 1 116 8 2 1 4 2 4 2 1 1 4 47
1111 8 4 2 1 2 1 4 2 1 1 2 2
11 4 4 2 1 4 2 4 216 8 2 2 1 1
1 2 2 2 1 2 1 4 2 8 4 1 1 1 1
4 4 2 1 4 2 4 2168 1 1 1 1 2 2
2 2 21 2 14 28 4 1 1 1 1 11
11 4 2 4 216 8 2 1 2 2 4 4 1 1
11 2 14 2 8 4 2 1 1 1 2 2 11
2 1168 1 1 2 2 1 1 4 4 4 2 4 2
2184 1 1 1 1 1 1 2 2 4 2 2 1
4 2 4 2 4 4 1 1 2 2 1 116 8 2 1
21 4 2 2 2 1 1 11118 4 2 1
4 2 2 2 1 1 4 4 1 1 4 2 2 116 8
42 1 1 1 1 2 2 1 1 2 1 2 1 8 4
668 1 1 2 2 1 1 4 4 2 1 4 2 4 2

'8 4 1 1 1 1 1 1 2 2 2 1 2 1 4 2]

For instance, this operation gives
Yo = 2x1 +.CE2+.CE3+$4+4x5+2.CE6+$7+CE8+CE9+$10+2.CE11+$12+2$13+2$14+85E15+4$16,

(where the arithmetic is modulo 256, i.e., normal byte arithmetic) as follows
from the second column of the matrix M.

2.1.2 SAFER+ decryption round

The details of one round of decryption with SAFER+ are shown in Fig.
3. The operations in the decryption round simply invert in reverse order
the operations from the encryption round. Thus, the first operation in the
decryption round is to postmultiply the 16-byte round input

y = [ylyy% Y3, Ya,Ys, Y6, Y7, Ys, y972/1072/1172/1272/137Z/1472/1572/16]

by the the matrix M~!, which is the modulo 256 inverse of M, to give the
16-byte result

X = [551,552, T3, T4, X5, L6, L7, L8y L9y L10, L11, 9612,5513,5514,5515,5516]
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in the manner

The matrix M~ is the 16 x 16 matrix

[ 2
252
1
254
1
255
2
254
1
255
1
255
4
248
1
254

254
4
254
4
255
1
252
4
255
1
254
2
248
16
255
2

1
254
1
254
2
254
1
255
1
255
1
255
2
252
1
248

254
4
255
2
252
4
255
1
254
2
255
1
254
4
248
16

1
254
2
254
1
255
1
255
1
255
4
248
1
254
2
252

x=yM

255
2
252
1
255
1
254
2
255
1
248
16
254
4
254
1

4
248
1
255
1
255
1
255
2
254
2
252
1
254
1
254

248
16
255
1
254
2
255
1
252
4
254
4
255
2
254
4

2
254
1
255
1
254
2
252
4
248
1
254
1
255
1
255

252
4
255
1
254
4
254
4
248
16
255
2
254
2
255
1

1
255
1
255
1
254
4
248
2
252
1
254
1
255
2
254

Upon writing —¢ to denote 256 —7 in modulo 256 arithmetic,

can be written more simply as the 16 x 16 matrix

[ 2

-2
1

1
-2
1

-2

1 -1 4 -8
-2 2 -8
2 -4 1 -1
-2 4 -1
1 -1 1 -2
-1 1 -1
1 -2 1 -1
-1 2 -1
1 -1 2 -4
-1 1 =2
4 -8 2 =2
-8 16 —4
1 -2 1 -1
-2 4 =2
2 =2 1 =2
-4 4 =2

16

2 —4
2 4
1 -1
1 1
1 -2
2 4
2 =2

4
4 -8
8 16
1 -1
2 2
1 =2
12
1 -1
1 1

1
-1
1
-1
1
-2

-1

255
1
254
2
255
2
248
16
254
1
254
4
255
1
252
1

the matrix M~

1
255
2
252
4
248
1
254
1
254
1
255
2
254
1
255

254
2
254
4
248
16
255
2
254
4
255
1
252
4
255
1

255

248

252

254

254

254

255

255

255
248
16
254
254
255
252
255

254




For instance, this operation gives

T3 = Y1 —2Y2+y3—2ys+2ys— 2y +yr—ys+yo—yio+y11 — Y12+ 2y13—4y14+4y15— 8y,

(where the arithmetic is modulo 256, i.e., normal byte arithmetic) as follows
from the third column of the matrix M~".

The round subkey K, 915 is then “subtracted” from x in the manner
that the round subkey bytes 1, 4, 5, 8, 9, 12, 13, and 16 are subtracted modulo
256 from the corresponding bytes of x while round subkey bytes 2, 3, 6, 7,
10, 11, 14 and 15 are added bit-by-bit modulo 2 to the corresponding bytes
of x. The 16-byte result of this “subtraction” is then processed nonlinearly
in the manner that the value x of byte j is converted to log,s(x) for bytes
j=1,4,5,8,9, 12, 13, and 16 (again with the convention that when x = 0
then log,;(0) is represented by 128), while the value = of byte j is converted
to 45 mod 257 for bytes j = 2, 3, 6, 7, 10, 11, 14 and 15 (again with the
convention that when = 128 then 45'%® mod 257 = 256 is represented by
0). The round subkey Ky, o;,1 is then “subtracted” from the 16-byte result
in the manner that the round subkey bytes 1, 4, 5, 8, 9, 12, 13, and 16
are added bit-by-bit modulo 2 to the corresponding input bytes while round
subkey bytes 2, 3, 6, 7, 10, 11, 14 and 15 are subtracted modulo 256 from
the corresponding input bytes to produce the 16-byte round output.

2.1.3 SAFER+ Key Schedules

The 2r + 1 16-byte SAFER+ round subkeys required for the r rounds and
for the output transformation of encryption (which are the same as those
required for the input transformation and the r rounds of decryption) are
produced from the input key according to a key schedule that depends on
the key length selected.

Calculation of biases for key schedules

The key schedules of SAFER+ make use of 16-byte bias words to “randomize”
the round subkeys produced. The required number of bias words is the same
as the number 2r 4+ 1 of round subkeys, i.e., this number is 17, 25 or 33
depending on whether the user-selected-key length is 128 bits, 192 bits or
256 bits, respectively. The first bias word, however, is a “dummy” word that
is never used but is convenient to have defined for programming purposes.
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Let B; denote the i-th bias word and let B; ; denote the j-th byte of this
1-th bias word. For bias words By, Bs, ... By7, which are used in all the key
schedules and are the only bias words needed for a 128-bit user-selected key,
the bias bytes are computed in the following manner:

B = A5UST med 257) 164 957

(where B;; is represented as 0 in case this expression gives a value of 256
and) where this expression applies for i = 2,3,...,17 and j = 1,2,..., 16.
The bias words Big, Big, ... Bss, of which only the first eight are needed for
a 192-bit user-selected key but all sixteen of which are needed for a 256-bit
user-selected key, are computed in the following manner:

B, ; = 457 mod 257

(where B;; is represented as 0 in case this expression gives a value of 256
and) where this expression applies for ¢ = 18,19,...,33 and j = 1,2,..., 16.

Table I gives lists all 32 bias words By, Bs, ... Bss that are used in the
SAFER+ key schedules. These bias words were computed from the above
formulas and are listed in the manner that the 16 bytes of By form the first
row, the 16 bytes of B3 form the second row, ... , and the 16 bytes of Bs3
form the last row.

Key schedule for 128-bit user-selected key

The key schedule for the 128 bit (or 16 byte) input key is diagrammed in
Fig. 4. The necessary 17 round subkeys for the 8 rounds and the output
transformation of encryption are produced in the following manner. The
user-selected key itself is used as the first round subkey K; and is also loaded
into the first 16 byte positions of a 17-byte key register. The last byte position
of this register is loaded with the bit-by-bit modulo-two sum of the 16 bytes of
the user-selected key. Each byte of the key register is then rotated leftwards
by 3 bit positions. The second round subkey K, is then computed as the
modulo 256 sum of the bytes in the 16-byte bias word B, with the bytes
in byte positions 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17,
respectively, of the key register. Each byte of the key register is then again
rotated leftwards by 3 bit positions. The third round subkey K3 is then
computed as the modulo 256 sum of the bytes in the 16-byte bias word Bj
with the bytes in byte positions 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17 and 1, respectively, of the key register. This processes continues with
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70
236
138

93

42
221

o8
125
192
252
250

24

69

45
182
136
220

44
163

84
171
137
233

98

71
117
229
200

40

8

53

151
171
195
87
97

208
173
141
32
11
180
77
243

70
134
181
139
182
242
254
205

41
111
125

25

)

1
103
72

177
170
216
146
184
128
28
178
207
66
33
7
84
124
22
151
119
178
87
223
96
122
230
46
112
228
97
225
45
9
156

62 220 134
Table I: Bias words Bsy, Bs, ..

186
198
137
31
52
222
209
239
169
199
0
132
229
109
115
177
215
43
60
12
208
93
70
14
157
237
253
102
226
148
81
119

163
103
106
213

50
231

48
194
129

26
234
37
157
59
186
166
136
130
26
108
73
66
116
126
128
77
221
147
235
47
215

183
149
233
113
25
49
62
135
226
228
249
91
60
181
30
163
17
209
196
142
234
201
143
80
16
106
124
179
190
38
59
166

16
38
54
92
253
214
18
206
196

166
164
12
38
142
183
251
153
82
222
250
50
10
2
206
144
183
38
69
168
85
17

. B33 used in SAFER+ key schedules.

10
13
73
187
251
127
161
117
39
85
185
200
74
116
112
16
244
203
92
224
199
194
193
90
18
25
11
105
21
107
227
251

197
248
67
34
23

205

47
94
232
14
139
242
189
10
186
140
28
57
217
249
204
195
39
162
238
99
174
189
192
244

95
154
191
193

64
162

15

19
108
140
158
203

63
147
134
197
146
132
232
252

0
154
185

37
213

94
173

36
120

24
159
186

179
246
235
190
230
247
224
2
122
20
98
72
204
83
27
25
145
29
160
32
212
248
101
123
76
118
75
15
3
52
216
146

201
110
212
123
81
o7
168
144
159
118
76
105
167
176
71
179
100
20
4
155
31
109
176
138
79
170
34
161
135
27
211
145

90
102
150
188

29
218
175

79

82

96
217

75
219
240
126
201
131
129
180

36
110

22
210

42
214
197
245

49
164
187
243
100

40
220
155
153

65
111
130

46
225
255
145

78
107

17

36

90
241
151
133

78

67
219
198

91
121
127
231
149
184
191
141
131

172

104
99
68
35
89

114
21

223
30

156

174

237
86
40
ol

113
74

169

188
89

172

240
48
61

115
23
56

114

177

241

100

61
160
148
143
202

44

51

56
215
210

23
244
131
241
172
239
202
246
152
236
150

30

104
175
35

207
247
255

o1



leftwards rotation by 3 bit positions of the key register followed by addition
of the appropriate bias word to the sixteen bytes of the key register located
one byte position rightwards (with position 1 understood to be to the right
of position 17) of those previously used until the seventeenth round subkey
K;7 has been produced as the modulo 256 sum of the bytes in the 16-byte
bias word 7 with the bytes in byte positions 17, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, and 15, respectively, of the key register.

Key schedule for 192-bit user-selected key

The key schedule for the 192 bit (or 24 byte) input key is diagrammed in
Fig. 5. The necessary 25 round subkeys for the 12 rounds and the output
transformation of encryption are produced in the following manner. The first
16 bytes of the user-selected key itself are used as the first round subkey K;
and the entire user-selected key is loaded into the first 24 byte positions of a
25-byte key register. The last byte position of this register is loaded with the
bit-by-bit modulo-two sum of the 24 bytes of the user-selected key. Each byte
of the key register is then rotated leftwards by 3 bit positions. The second
round subkey K5 is then computed as the modulo 256 sum of the bytes in
the 16-byte bias word By with the bytes in byte positions 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16 and 17, respectively, of the key register. Each
byte of the key register is then again rotated leftwards by 3 bit positions.
The third round subkey K3 is then computed as the modulo 256 sum of the
bytes in the 16-byte bias word Bs with the bytes in byte positions 3, 4, 5, 6,
7,8,9, 10, 11, 12, 13, 14, 15, 16, 17 and 18, respectively, of the key register.
This processes continues with leftwards rotation by 3 bit positions of the
key register followed by addition of the appropriate bias word to the sixteen
bytes of the key register located one byte position rightwards (with position
1 understood to be to the right of position 25) of those previously used until
the twenty-fifth round subkey Ky5 has been produced as the modulo 256 sum
of the bytes in the 16-byte bias word By; with the bytes in byte positions
25,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, and 15, respectively, of the key
register.

Key schedule for 256-bit user-selected key
The key schedule for the 256 bit (or 32 byte) input key is diagrammed in
Fig. 6. The necessary 33 round subkeys for the 16 rounds and the output
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transformation of encryption are produced in the following manner. The first
16 bytes of the user-selected key itself are used as the first round subkey K;
and the entire user-selected key is loaded into the first 32 byte positions of a
33-byte key register. The last byte position of this register is loaded with the
bit-by-bit modulo-two sum of the 32 bytes of the user-selected key. Fach byte
of the key register is then rotated leftwards by 3 bit positions. The second
round subkey K5 is then computed as the modulo 256 sum of the bytes in
the 16-byte bias word By with the bytes in byte positions 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16 and 17, respectively, of the key register. Each
byte of the key register is then again rotated leftwards by 3 bit positions.
The third round subkey K3 is then computed as the modulo 256 sum of the
bytes in the 16-byte bias word B with the bytes in byte positions 3, 4, 5, 6,
7,8,9, 10, 11, 12, 13, 14, 15, 16, 17 and 18, respectively, of the key register.
This processes continues with leftwards rotation by 3 bit positions of the
key register followed by addition of the appropriate bias word to the sixteen
bytes of the key register located one byte position rightwards (with position
1 understood to be to the right of position 33) of those previously used until
the thirty-third round subkey K33 has been produced as the modulo 256 sum
of the bytes in the 16-byte bias word B33 with the bytes in byte positions
33,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, and 15, respectively, of the key
register.

2.2 Examples for SAFER+

The above description of SAFER+ is intended to be detailed and clear enough
for a designer to program this cipher or implement it in silicon. The data
in the following three examples, one for each key length accomodated by
SAFER+, may he helpful to a designer who implements SAFER~+ from this
description.
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Example for 128 bit key:

This is the 16 byte user-selected input key:

41 35 190 132 225 108 214 174 82 144 73 241 241 187 233 235
This is the plaintext block input:

179 166 219 60 135 12 62 153 36 94 13 28 6 183 71 222
This is the ciphertext block output:

224 31 182 10 12 255 84 70 127 13 89 249 9 57 165 220
These are the round subkeys K, K, ... ,Kj7(one key per row):

41 35 190 132 225 108 214 174 82 144 73 241 241 187 233 235
95 140 213 201 6 109 133 156 73 129 66 &8 55 119 11 35
155 204 34 225 28 64 236 49 74 22 114 92 224 214 2 135
147 134 176 54 199 141 &7 219 38 162 98 167 109 138 186 230
123 29 255 9 250 122 240 218 65 124 92 57 59 43 149 127
96 204 15 93 122 189 245 243 244 52 219 76 177 210 163 209
56 190 201 32 12 248 157 109 168 81 214 221 102 105 53 81
15 26 46 250 110 124 137 222 74 13 o 12 134 18 149 185
207 61 251 224 179 66 183 96 253 60 37 78 211 15 222 9
68 215 94 56 94 49 35 230 120 133 111 195 97 68 203 173
78 156 190 181 130 222 6 159 38 59 53 238 123 180 138 107
221 238 152 211 241 232 248 255 101 167 37 36 134 238 244 243
55 111 165 66 105 237 214 179 8 233 14 214 53 115 165 201
34 65 73 224 185 205 107 140 123 117 55 254 4 179 82 236
212 162 91 17 41 175 56 251 163 238 13 249 50 54 180 74
51 159 215 18 174 202 253 151 91 101 &9 167 98 148 104
127 111 186 111 62 132 35 230 184 23 199 252 186 75 227 149
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Example for 192 bit key:

This is the 24 byte user-selected input key:

72 211

14

92

These are the round subkeys K, K5,

72
228
207
116
203

22

81
127

98
198
249

80
159

5

75

62
150
214

64
163
161

91
191
192
143

95

211
19
8
144
244
239
172
140
109
76
234
251
204
16
1
196
165

181

52
204
184
248
114
113

143
30

143
92
99

139
99

205
23
52

169
40
96
36

127

118

180

231
119
231

25
183
191

46
239

117 230 217
0 212
This is the plaintext block input:
123 5 21 7 59 51
This is the ciphertext block output:
136 4 63 57 95

117
241

60
195
193

38
225
207

26
108

39

15
200
236
234
125
177
125
131

87
247
102
126
192
157

230
113
174
190

o1
146
198
149

o8
141
233
162
202
212
222

59
142
177
235
255
236
144
152

o1
233

29

42229 192 247 43
97 141 190

120

130 31 24 112 146 218 100 84 206

100 0O

217
159
31
180
125
20
221
77
8
30
245
21
80
100
181
184

125
128
30
18
211

61
o4

1

29
97
209
183
219
146
183
66
85
230
140
100
169
12
121
186
68
240
228
226
27
193

230
219

13

50 130

42
57
61
o6
109
95
133
145
185
151
44
89
200
180
249
33
206
93
221

216
129

93
252
119

130

229
203
245
153
169
215
31
85
20
41
114
232
91
29
40
148
95
252
128
29
144
76
96
111
237

129

177

135 68

16 193 111 219 133

192
246
100
175
217
3
179
208
114
238
140
71
225
5
141
43
13
48
103
210
106
236
14
254
10

... ,Ko5(one key per row):

247
12
20

238
o4

8
47

203
82

122
73
36
32
43

7
36
10
13

122

109

189
98

160
33
29

43
140
206
227
191

88
182
178
144

69
206
103

84

61
209
193

66

15
205
183
108

52

200
129

120
102
71
30
156
204
27
175
35
93
195
86
29
255
63
111
62
186
247
238
198
96
25
208
85

129
100
237
183
142
105
111

28
143

77
174
235
210

84

79
210

64
191
222
217
172
163
186

43
211

135
206
136
38
104
68
118
133
255
10
42
224
217
117
194
50

27
251
21
181
183

187
113

68
212
20
64
148
249
79
221
241
161
233
121
45
174
30
44
201
64
67
119
23
129
119
78
141



Example for 256 bit key:

This is the 32 byte user-selected input key:
243 168 141 254
135 120 115

This is the plaintext block input:
127 112 240

167

190 242 235
77208 190 130 190 219 194

84

134 50 149 170 91
This is the ciphertext block output:

113

255

160

104

208
70

19

88 11 25 36 172 229 202 213 170 65 105 153

These are the round subkeys K, K5,

243 168 141

139
79
135
72
163
140
104
124
197
48
112
111
72
95
133
15
159
8
61
97
10
147
192
61

3
106
64
134
86
201
207
77
19
238
245
20
147
236
243
190
33
8
44
161
o1
248
72
235

168
89
189
30
112
127
48
130
168
159
45
207
147
154
37
10
225
230
212
7
191
233
62
116

254
175
130
96
o4
o1
96
235
42
84
72
25
107
168
78
225
254
93
218
65
247
189
104
14
79

190 242 235

58
97
76
212
130
42
151
95
177
43
22
98
97
106
228
138
155
40
255
215
205
98
106
159

22
241
232
123
129

29
236
141

70
131

8
226
245
234

o6

97

37
128
123
186

13
206
244
220

155

87
119
105
154
171
210

90
183
234
150
219
178
105
101

57
240
143
215

66
154
222
155
252

14

113
9
53
234
110
181
151
50
243
99
115
159
156
178
110
192
206
210
123
232
244
92
244
32
138

255
202

44
185
121

26

o1
156
141
242

o8
130

27
234
252
148
229
208

29
158
235

31
228
210
238

160
189
104
169
33
134
155
255
139
7
223
63
182
128
141
1
135
196
212
62
196
125
90
30
24

... ,K33(one key per row):

208
140

83
247
134

37

21
239
117
228

72
223
112

43
194
115
125
155
231
185
207
236
164
227

35

29 117
43 140 250

65

11

220

29
116
239
237

98

20

26

22
221

37

37

81

84
148
187

15
244
189

95
249
158
180

60
197

23

230

104

117
138
137
146
52
89
167
88
31
71
0
36
8
60
9
166
244
231
63
20
214
103
184
131
40

6 140 126

252

153

140
123
170

32
250
164
156
236
245
174

72
122
142

22
137
230
200
163
219
141
151

17
165

25

245

138

140
159
230
88
154
234
102
48
244
10
213
213
0
78
153
231
34
180
59
49
ol
130
84
131
226

48

126
160

91
134
104
247
196
124
241

22
135

94

73
137
181

30
220

72
198

71
112
107
144
124
241



93

103
122
110
243

59
105

161
205
111
205
126

39
173
207

122
174
122
144
69
181
26
46

246

16
242
105
119

99
102

226

62
173
143
140
141
224
213

231
118
210
242
18
92
26
100

79
90
158
226
11
163
44

15

107
51
92
65

148

101
65

230

198
204

82
13
136
61
101

26
193
170

65
241
199
205
185

184
53
200
62
248
249
215
50

70
89

95
63
26
231
97

203
129
204
72
163
61
13
159

16
121
201
148

244
248

143
153
114
33
160
94
95
247

243
174
100

20
108
204
191
191



3 Design Rationale

The major design principles underlying the SAFER+ algorithm are the fol-
lowing;:

e Encrypting Structure

e Byte Orientation

e Group Operation at Round Input

e Use of Two Additive Groups

e Use of the Exponential and Logarithm in Nonlinear Layer
e Fast Diffusion via the Matrix M

e Scalability

e Biases in Key Schedule

e Parity Word and Selections in Key Schedule

e Number of Rounds

Each of these principles will now be explained.
Encrypting Structure

It should be emphasized that SAFER+, unlike the Date Encryption Algo-
rithm (DEA) of DES and many later iterative block ciphers, is not a “Feis-
tel” cipher. In a Feistel cipher, the round input is split into its left and right
halves, say L; 1 and R;_; for the input to round 7. Some nonlinear function
f from a half-block/round-key pair to a half block is then applied to the
right half input R;,_; and the round key K;. The value of this function is
then added bit-by-bit modulo 2 to the left half input L;_; to create a “new”
left half L; 1 & f(R;_1, K;). The left and right halves are then “swapped” to
produce the left half L; and right half R; of the output of round 7 as L; =
Ri;1 and R; = L;_1 @ f(R;_1, K;). The Feistel structure has the feature
that the round function is invertible regardless of the choice of the function
f. The “swapping of halves” is omitted in the final round of encryption
with the result that decryption can be performed by using the encrypting
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algorithm together with the round keys taken in reverse order. This “en-
cryption/decryption similarity” is an implementation advantage for a Feistel
cipher. On the other hand, diffusion in a Feistel cipher tends to be somewhat
slow. For instance, it takes two rounds before every bit of the input can be
altered by the algorithm. Moreover, the design of the function f, which is
the main source of cryptographic strength, poses substantial problems that
are generally solved by the use of “random-looking” tables that are difficult
to justify analytically to a suspicious cryptanalyst.

A generalization of the Feistel cipher is the kind of iterative block ci-
pher that is sometimes called a “substitution—permutation” cipher. Within
a round of such a cipher, an invertible function controlled by the round key is
first applied to the round input, then a permutation of coordinates is applied
to the result. The substitution—permutation structure gives the designer
more freedom than does the Feistel structure so that more rapid diffusion
can be obtained, but in general the property of encryption/decryption sim-
ilarity is lost, i.e., the encrypting and decrypting algorithms differ in more
than the ordering of the round keys.

SAFER+ (as is also the case with all prior ciphers in the SAFER family)
is neither a Feistel cipher nor a substitution—permutation cipher. There is
no fundamental reason to alternate between substitutions and permutations
(of coordinates) to create good confusion and diffusion. SAFER+ can be
called a substitution/linear-transformation cipher, by which we mean that
an invertible function controlled by the round key is first applied to the
round input, then an invertible linear transformation is applied to the result.
Because a permutation of coordinates is also an invertible linear transfor-
mation, the substitution/linear-transformation structure is a generalization
of the substitution—permutation structure and offers the designer still more
freedom. In particular, as will be seen below, extremely fast diffusion can be
achieved by the judicious choice of the invertible linear transformation of the
cipher.

Byte Orientation

SAFERH+ is a byte—oriented cipher (as are also all prior ciphers in the SAFER
family) in the sense that during encryption, decryption, and execution of the
key schedule, only functions from one byte to one byte are used. This has the
advantage that SAFER+ implements particularly well on 8-bit microproces-
sors. During set—up of the SAFER+ algorithm (i.e., during preparation of
the tables for exponentiation of 45 modulo 257, for logarithms to the base
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45, and for the key biases), some simple integer operations are performed,
but this is done once and for all.

Group Operation at Round Input

As can be seen from Figs. 1 and 2, the first operation within the SAFER+
encrypting algorithm is to combine the 16-byte plaintext block with the 16-
byte round subkey K; by the “addition” operation described in Section 2.1.
This “addition” operation is a group operation. Moreover, the 16 bytes of
round subkey K are the first 16 bytes of the user—selected key regardless of
the keylength chosen. If the user selects the key uniformly at random, then,
for an arbitrarily chosen plaintext block, the result of the group operation is
equally likely to be any of the 2'?® possible 16 byte blocks. This means that
the result of this group operation is statistically independent of the plain-
text block and hence that this group operation provides perfect secrecy in
the sense of Shannon [3] when the key is used only one time. Of course, the
SAFER+ key will typically be used to encrypt very many plaintext blocks
before being changed, but it is nonetheless worthwhile to incorporate this
element of provable perfect secrecy into an encryption algorithm.

Use of Two Additive Groups

The group operation used to insert round subkeys as described in Section
2.1.1 is the operation of a “product group” consisting of 16 smaller groups.
For 8 of these smaller groups, the operation is addition modulo 256 (i.e.,
usual byte addition) and for the remaining 8 smaller groups, the operation
is bit-by-bit addition modulo 2 (i.e., the bitwise exclusive-or operation).

Using two different group operations to insert a round subkey permits
enhanced “confusion” to be created by SAFER+ encryption. Consider for
instance the function exptab(.) such that exptab(z) = 45" mod 257 (with
the convention that when z = 128 then 45'%® mod 257 = 256 is represented
by 0) for 0 < z < 255, which is the function corresponding to “exp” in Fig.
2. For this function,

exptab(z; + x9) = exptab(z;) x exptab(zy)

where “+” denotes addition modulo 256 and “x” denotes multiplication
modulo 257. However, in general

exptab(z; @ x5) # exptab(z1) X exptab(xs)
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where “@” denotes bit-by-bit addition modulo 2 and “x” denotes multiplica-
tion modulo 257. This difference is important—it shows that adding two bytes
modulo 256 then evaluating exptab(.) of the result is equivalent to evaluat-
ing exptab(.) of each byte separately then multiplying the results, but this
“morphism” property does not hold when the addition is bit-by-bit modulo
2. This is the reason that, in Fig. 2, those bytes of round subkey K»; ; that
are affected by the “exp” operation are inserted by bit-by-bit addition mod-
ulo 2 and not by addition modulo 256 as are the other bytes of Ky;_;. The
insertion of those other bytes by addition modulo 256, however, is important
for the strength of SAFER+ against linear cryptanalysis as will be discussed
in Section 5.3. Having both types of addition available in SAFER+ makes
it possible to exploit the particular strengths of each.

Use of the Exponential and Logarithm in Nonlinear Layer

As was described in Section 2.1.1 above, the 16 bytes within a round of
SAFER+ that result from the “addition” of the first of the two round sub-
keys are used as inputs to either the function exptab(.) or its inverse logtab(y)
= log,s(y) for 0 <y < 255 (with the convention that log,s;(0) = 128), which
is the function corresponding to “log” in Fig. 2. The choice of exptab(.) and
logtab(.) as the mutually inverse nonlinear functions within the “nonlinear
layer” of a round of SAFER+ was motivated by several factors. First of
all, these are well-defined mathematical functions and their use obviates the
suspicions of intentional weakness that might be raised if mutually inverse
nonlinear functions defined only by “random looking” tables were chosen.
Further, it was shown in [4] that, for the boolean functions determining sin-
gle bits of exptab(.) and logtab(.), the number of terms of a given nonlinear
order in the algebraic normal form of the function follows virtually the same
distribution as for a randomly chosen boolean function. Moreover, Vaude-
nay [5], as a result of his cryptanalysis of SAFER K-64, concluded that
the “choice |of exptab(.) and logtab(.) as the mutually inverse nonlinear
functions] is a very good one” because a substantial fraction of all mutually
inverse nonlinear functions when used in their place would lead to a known
plaintext attack faster than exhaustive search.

Fast Diffusion via the Matrix M

In the previous ciphers of the SAFER family, for which the block size is
always 8 bytes, the linear layer implements what Massey [1] has called the 3-
dimensional Pseudo Hadamard Transform (PHT). The 3-dimensional PHT
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corresponds to postmultiplication modulo 256 of the 8 byte input by the
matrix

8 4 4 2 4 2 21
424221 21
4221 4 2 21
21212121

Hs=1, 429292911
22221111
22112211
11 1111 11|

This matrix yields good diffusion in the sense that inputs with a small number
of non-zero bytes generally produce outputs with many non-zero bytes. Note,
however, that the input block [128 0 0 0 0 0 0 0] produces the output block
0000000 128] that also has only one non-zero byte.

For a block size of 16 bytes, one could use the 4-dimensional PHT, which
corresponds to postmultiplication modulo 256 of the 16-byte input by the
matrix

[16 8 8 4 8 4 4 2 8 4 4 2 4 2 2 1]
8 48 44 2 42 42422121
8 44 28 44 2 422142 21
4 2424 24221212121
8 84 444 2 2 44222211
4 4442 22122221111
4 42 2442122112211

H, — 2 2222221111 11111
8 44 242 2 18442 42 21
4 24 2212142422121
4 22 1422142214221
2 1212121212121 21
4 4222 21144222211
2 2221 111222211171
2 21 12211221122171
1111111111 111111]

Indeed this choice of the invertible linear transformation yields rather good
diffusion. Note again, however, that the input block [1280 000000000
0 0 0 0 0] produces the output block [0 0000000000000 0 128] that
also has only one non-zero byte.
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One of the major improvements of SAFER+ over the previous ciphers in
the SAFER family is the choice of an invertible linear transformation that
is considerably better than the PHT as described above. The matrix of this
transformation, which was already given in Section 2.1.1, is

2 2 1 116 8 2 1 4 2 4 2 1 1 4 47
11118 4 2 1 2 1 4 2 1 1 2 2
11 4 4 2 1 4 2 4 216 8 2 2 1 1
11 2 2 2 1 2 1 4 2 8 4 1 1 1 1
4 4 2 1 4 2 4 2106 8 1 1 1 1 2 2
2 2 21 2 14 2 8 4 1 1 1 1 11
11 4 2 4 2168 2 1 2 2 4 4 1 1

M — 1 2 14 2 8 4 2 1 1 1 2 2 11
2 1168 1 1 2 2 1 1 4 4 4 2 4 2
21 8 4 1 1 1 1 11 2 2 4 2 2 1
4 2 4 2 4 4 1 1 2 2 1 116 8 2 1
21 4 2 2 2 1 1 1 1 1 18 4 2 1
42 2 2 1 1 4 4 1 1 4 2 2 116 8
42 1 1 1 1 2 2 1 1 2 1 2 1 8 4
68 1 1 2 2 1 1 4 4 2 1 4 2 4 2
18 4 1 1 1 1 1 1 2 2 2 1 2 1 4 2]

One sees that every row of the matrix M contains at least five 1’s, which
means that every input block with a single non-zero byte will produce an
output block with at least five non-zero bytes. The diffusion provided by
the matrix M is extremely fast. Moreover, the matrix M is so designed as
to make SAFER+ highly resistant to differential cryptanalysis, as will be
explained in Section 5.2.

The PHT in the one-dimensional case has the matrix

2 1
H, = [ 11 ] ’
which means that the first output byte is the sum modulo 256 of twice (or one
left shift of) the first input byte and the second input byte, while the second

output byte is just the sum modulo 256 of the two input bytes. Realization of
this simple transformation corresponds to a “butterfly” in the usual language

21



of signal processing. The two-dimensional PHT has the matrix

H, =

— N DN
_ =N DO
_—DN = DN

1
1
nE
1

which is just the Kronecker product of the matrix H; with itself. This is real-
ized by four PHT butterflys appropriately arranged in two levels. Similarly,
the three-dimensional PHT and four-dimensional PHT are the threefold and
fourfold Kronecker product of the matrix Hy with itself and can be realized
with 16 and 64 PHT butterflys appropriately arranged in three levels and
four levels, respectively. The matrix M was also chosen so that it can be
realized by 64 PHT butterflys arranged in four levels, which is very desirable
for efficient implementation whether in software or hardware, but the inter-
connection pattern of the signals between levels was chosen so as to achieve
the above-described desirable properties of the resulting matrix.

Scalability

SAFER+ has the property, as do all ciphers in the previous SAFER family,
that it can be scaled down to “mini-versions” that permit study of the prop-
erties of the algorithm in a simplified setting. A byte in standard SAFER+
can be reduced to 2 bits (and hence the block size reduced to 32 bits) by
changing the modulo 256 and modulo 257 arithmetic used in SAFER+ to
modulo 4 and modulo 5 arithmetic, respectively. Alternatively, a byte in
standard SAFER+ can be reduced to 4 bits (and hence the block size re-
duced to 64 bits) by changing the modulo 256 and modulo 257 arithmetic
used in SAFER+ to modulo 16 and modulo 17 arithmetic, respectively. [It
is even possible to make a “maxi-version” of SAFER+ in which a byte in
standard SAFER+ is expanded to 16 bits (and hence the block size increased
to 256 bits) by changing the modulo 256 and modulo 257 arithmetic used in
SAFER+ to modulo 2'® and modulo 2'° 4 1 arithmetic, respectively. This
would in fact be a very strong cipher but rather difficult to implement since
the logarithm and exponential tables would each require 2'¢ entries of 16
bits each.] The only “arbitrary” parameter that must be selected for these
non-standard versions of SAFER+ is the element of multiplicative order 2™,
modulo the prime number 2™ + 1 where m is the number of bits in a sym-
bol, used as the base for exponentiation and logarithms. The choice of this
parameter (which was chosen as 45 in standard SAFER+ where m = 8) is
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of minor importance—any element of multiplicative order 2™ can be used in
the m-bits/symbol mini-version of SAFER+.

The value of scalability is that it permits quick checking on mini-versions
of conjectures about properties of the full SAFER+ algorithm. Its useful-
ness is well illustrated by the fact that a supposed and plausible weakness
that had been asserted! to exist in SAFER K-64 could be demonstrated as
erroneous by exhaustive testing of a mini-version of this cipher.

Biases in Key Schedule

The addition of “biases” to shifted versions of the user—selected key in order
to generate round subkeys, which was described in Section 2.1.3, is used in
SAFER+ to avoid “weak keys” such as can occur with the DEA of DES or
with IDEA [6] where, for instance, if the user—selected key is all-zero then all
round subkeys are identical. This property is of minor significance for encyp-
tion because of the negligibly small probability of choosing a “weak key”, but
it can be significant when the algorithm is used for hashing. Essentially, the
addition of the biases in the SAFER+ key schedule randomizes the round
subkeys generated from a single user—selected key and hence avoids the oc-
currence of such “weak keys”.

Parity Word and Selections in Key Schedule

In SAFER K-64, the first cipher in the SAFER family [1], the key schedule
differed from those of SAFER + as shown in Figs. 4-6 in that the same bytes
of the key register were always selected for addition to the biases to produce
the round subkeys. Knudsen [8] showed that this “stationarity” of the bytes
in the key register made it possible, when SAFER K-64 was used in a hash-
ing mode, to create “collisions” much more often than by random guessing.
Knudsen suggested a modification of the key schedule to remove this weak-
ness, which Massey then incorporated into the later ciphers (SAFER SK-64,
SAFER SK-128, and SAFER SK-40) in the SAFER family after obtain-
ing from Knudsen a signed statement relinquishing all intellectual rights to
this modified key schedule. Knudsen’s key schedule not only introduced the
“non-stationarity” of the bytes of the key register added to the bias, which
is implemented by the “selection” boxes in Figs. 4-6, but it also included
expansion of the key register by the addition of a “parity byte,” i.e., a byte
which is the modulo-two sum of all the bytes in the user—selected key. This

1S. Murphy, ” An Analysis of SAFER,” preliminary manuscript dated June 6, 1995.
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augmentation of the key register has the very desirable consequence that, if
two user—selected keys differ, then they will differ in at least two bytes of the
key register where the parity byte is also present. This provides a healthy
diversity of the keys produced by the key schedule of SAFER+.

Number of Rounds

The most effective attack against SAFER+ appears to be Biham and Shamir’s
differential cryptanalysis [7]. As will be explained in Section 5.2, SAFER+
with six rounds is essentially immune to this attack. The choice of 8 rounds
when a 128-bit key is used was made to provide a significant margin of safety
for the security of SAFER+. This choice also has the desirable effect, as can
be seen from Fig. 4, that each byte of the 16-byte user-selected key directly
affects some round subkey exactly once in each of the 16 possible byte posi-
tions, as does also the parity byte appended to the user—selected bytes. The
choice of 12 rounds for SAFER+ with a 192-bit key was made to provide the
significant additional security to which a user is entitled who opts to use this
longer key length. This choice also has the desirable effect, as can be seen
from Fig. 5, that each byte of the 24-byte user—selected key again directly
affects some round subkey exactly once in each of the 16 possible byte posi-
tions, as does also the parity byte appended to the user—selected bytes. The
choice of 16 rounds for SAFER+ with a 256-bit key was made to provide
the superabundant security to which a user is entitled who opts to use this
longest key length. This choice also has the desirable effect, as can be seen
from Fig. 6, that each byte of the 32-byte user—selected key once again di-
rectly affects some round subkey exactly once in each of the 16 possible byte
positions, as does also the parity byte appended to the user—selected bytes.
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4 Computational Efficiency of SAFER+

4.1 ANSI C with 200 MHz Pentium Platform

The data below specify the computational speed for the optimized ANSI C
implementation of SAFER+.

Platform: Pentium Pro Processor, 200 MHz, 64 MB RAM, running Win-
dows 95. (1 sec = 1000 clocks.)

Encryption
These data were obtained by timing the encryption of 1,000,000 blocks on
the above described Pentium platform.

e SAFER+ with 128 bit key (8 rounds)-10,425 clocks per encrypted
block, i.e., about 10.4 microseconds per encrypted block or about 12.3
megabits per second of encrypted data.

e SAFER+ with 192 bit key (12 rounds)-15,492 clocks per encrypted
block, i.e., about 15.5 microseconds per encrypted block or about 8.3
megabits per second of encrypted data.

e SAFER+ with 256 bit key (16 rounds)-20,560 clocks per encrypted
block, i.e., about 20.5 microseconds per encrypted block or about 6.2
megabits per second of encrypted data.

Decryption
These data were obtained by timing the decryption of 1,000,000 blocks on
the above described Pentium platform.

e SAFER+ with 128 bit key (8 rounds)-10,425 clocks per decrypted
block, i.e., about 10.4 microseconds per decrypted block or about 12.3
megabits per second of decrypted data.

e SAFER+ with 192 bit key (12 rounds)-15,492 clocks per decrypted
block, i.e., about 15.5 microseconds per decrypted block or about 8.3
megabits per second of decrypted data.

e SAFER+ with 256 bit key (16 rounds)-20,560 clocks per decrypted
block, i.e., about 20.6 microseconds per decrypted block or about 6.2
megabits per second of decrypted data.
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Setting up of Key
These data were obtained by timing 1,000,000 executions of the SAFER+
key schedule on the above described Pentium platform.

o SAFER+ with 128 bit key—15,342 clocks, i.e., about 15.3 microseconds
to run the key schedule.

e SAFER+ with 192 bit key (12 rounds)-28,622 clocks, i.e., about 28.6
microseconds to run the key schedule.

e SAFER+ with 256 bit key (16 rounds)-45,725 clocks, i.e., about 45.7
microseconds to run the key schedule.

Setting up of Algorithm

These data were obtained by timing 1,000,000 settings up of the three tables
(exponentiation of 45 modulo 257, logarithms to the base 45, and key biases)
required in the SAFER+ algorithm on the above described Pentium platform.
The time is independent of the key length because, even for the shorter keys
where not all entries in the bias table are needed, the entire bias table was
generated each time.

e SAFER+ with 128 bit key—88,077 clocks, i.e., about 88 microseconds
to set up the algorithm.

e SAFER+ with 192 bit key (12 rounds)-88,077 clocks, i.e., about 88

microseconds to set up the algorithm.

e SAFER+ with 256 bit key (16 rounds)-88,077 clocks, i.e., about 88

microseconds to set up the algorithm.

Changing Key after Initial Setup
These data are the same as those given above for setting up of a key.

4.2 8-bit Processors

The following SAFER+ computational efficiency estimates encryption, de-
cryption, and setting up of a key for 8-bit processors are based on the MCS 51
family microcontrollers’” Programmers Guide. A more detailed explanation
of these data is given in the Appendix “SAFER+ Computational Efficiency
Estimates for 8-bit Processors”, which is attached to this document.
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Encryption
The number of clocks required for encryption is estimated to be r x 10080,
where r is the number of rounds (8, 12 or 16).

e SAFER+ with 128 bit key (8 rounds)-80,640 clocks per encrypted
block, i.e., for a 16 MHz clock frquency, about 5 milliseconds per en-
crypted block or about 25.6 kilobits per second of encrypted data.

e SAFER+ with 192 bit key (12 rounds)-120,960 clocks per encrypted
block, i.e., for a 16 MHz clock frquency, about 7.6 milliseconds per
encrypted block or about 16.9 kilobits per second of encrypted data.

e SAFER+ with 256 bit key (16 rounds)-161,280 clocks per encrypted
block, i.e., for a 16 MHz clock frquency, about 10.1 milliseconds per
encrypted block or about 12.7 kilobits per second of encrypted data.

Decryption
The number of clocks required for decryption is the same as for encryption.

e SAFER+ with 128 bit key (8 rounds)-80,640 clocks per decrypted
block, i.e., for a 16 MHz clock frquency, about 5 milliseconds per de-
crypted block or about 25.6 kilobits per second of decrypted data.

e SAFER+ with 192 bit key (12 rounds)—120,960 clocks per decrypted
block, i.e., for a 16 MHz clock frquency, about 7.6 milliseconds per
decrypted block or about 16.9 kilobits per second of decrypted data.

e SAFER+ with 256 bit key (16 rounds)-161,280 clocks per decrypted
block, i.e., for a 16 MHz clock frquency, about 10.1 milliseconds per
decrypted block or about 12.7 kilobits per second of decrypted data.

Setting up of Key

The number of clocks required for entering a used-selected key and perform-
ing the key schedule algorithm is estimated to be I x (48 x L +4200), where
L is the key length in bytes (8, 12 or 16).

e SAFER+ with 128 bit key (8 rounds)—36,672 clocks, i.e., for a 16 MHz
clock frquency, about 2.3 milliseconds to run the key schedule.

e SAFER+ with 192 bit key (12 rounds)-57,312 clocks, i.e., for a 16 MHz
clock frquency, about 3.6 milliseconds to run the key schedule.
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e SAFER+ with 256 bit key (16 rounds)-79,488 clocks, i.e., for a 16 MHz
clock frquency, about 5.0 milliseconds to run the key schedule.

Setting up of Algorithm

The following are conservative rough estimates for setting up of the three
tables (exponentiation of 45 modulo 257, logarithms to the base 45, and key
biases) required in the SAFER+ algorithm. The estimated time given is
independent of the key length because, even for the shorter keys where not
all entries in the bias table are needed, it would generally be convenient to
generate the entire bias table each time.

e SAFER+ with 128 bit key (8 rounds)—120,000 clocks, i.e., for a 16 MHz
clock frquency, about 7.5 milliseconds to set up the algorithm.

e SAFER+ with 192 bit key (12 rounds)-120,000 clocks, i.e., for a 16
MHz clock frquency, about 7.5 milliseconds to set up the algorithm.

e SAFER+ with 256 bit key (16 rounds)-120,000 clocks, i.e., for a 16
MHz clock frquency, about 7.5 milliseconds to set up the algorithm.

Changing Key after Initial Setup
These data are the same as those given above for setting up of a key.

4.3 Hardware Simulation

For simulated hardware implementation, SAFER+ has been implemented in
VERILOG HDL by using Synplify tools.
The measurement tools and conditions used were:

e Synplify and MAX+Plus II;
e ALTERA chip with speed grade:-3 (80 MHz);
e System clock: 62 MHz.

The simulation results were as follows:

1. Number of Synopsys cells:
e 62,000
2. Encryption and decryption rate for 128-bit key SAFER+:

e 58.9 megabits per second.
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5 Cryptographic Strength and Analysis

5.1 Cryptographic Strength of SAFER+

We are not aware of any cryptographic weaknesses in SAFER+. In our opin-
ion, for all three key lengths (128 bits, 192 bits, and 256 bits) accomodated
by the algorithm, there is no chosen-plaintext attack on SAFER+ more ef-
fective than exhaustive key search. Some of the principal reasons for this
belief are set forth in the following sections.

5.2 Strength against Differential Cryptanalysis

Differential cryptanalysis is a general attack against an iterative cipher that
was introduced by Biham and Shamir in 1990 [7]. Differential cryptanaly-
sis has proved to be the most effective general attack against the previous
SAFER family of ciphers, cf. [4], [8] and [9], and appears also to be the
most effective general attack against SAFER+. In the below discussion of
differential cryptanalysis, we follow the approach and notation of [4] and [6].

5.2.1 Differences and Differentials

As can be seen from Fig.2, at the beginning of a round, SAFER+ combines
the 16-byte round input X = [X1, Xo,..., Xi6] byte-wise with the 16-byte
vector Zy = [Za1, Zaos - - -y Za16), which is first of the two round subkeys. This
produces the 16-byte input T = [T}, Ty, ..., Tig] to the nonlinear layer in the
manner that T = X ® Z, where “®” is the product-group addition operator

R=[®++0,0,++,0,+,+8,0,+,+,P |

in which @& denotes bit-wise modulo-two addition of bytes and + denotes
usual byte addition, i.e., addition modulo 256.

Let the 16-byte vector S = [S7, Sy, ..., Si] denote the input to the linear
layer described by the matrix M in Fig. 2. Note that S is given by

S; = 45%i%Za) 7. j € {1,4,5,8,9,12,13,16}

and

S; =105 (X, + Zoj) ® Z;, j € {2,3,6,7,10,11,14, 15}
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where Zy = [Zy1, Zya, - - ., Zi1s) is the second of the two round subkeys. The
output Y = [Y7,Ys,. .., Yie] of the linear layer, which is also the round out-
put, is given by Y = S M.

Let “©@” denote the product-group subtraction of 16-byte vectors, i.e.,

© = [@a_7_a@7@a_a_7@a@7_a_a@7@a_7_a@]

where “—” denotes usual byte subtraction, i.e., subtraction modulo 256.
Then the difference AV = [AV}, AV,, ..., AVig] between the 16-byte words
V and V* is the 16-byte vector

AV =V oV~
Equivalently,
VieVy, Vo=V, Va-V& Vielr,
Av— BOVe Ve—Ve, Vi=Vr, Vol

Vo Vo, Vio=Vio, Viu =V, Vie® Vs,
Vis@ Vy, Via—Vi, Vis— Vi, Vie® Vi)

Let X(i) and Y (i) denote the 16-byte input and output, respectively, of
the i-th round of SAFER+. As usual in differential cryptanalysis, we assume
that all round subkeys are chosen independently and uniformly at random
(rather than actually produced by the SAFER+ key schedule from a random
user-selected key). A pair (a, 3) of non-zero 16-byte vectors, considered as
the value of (AX(1), AY (7)) is an i-round differential for SAFER+. It follows
from Proposition 1 in [4] that SAFER+ is a Markov cipher as defined in [6],
i.e., that the conditional probability

P(AY (i) = 8| AX(1) = a, X(1) =)
is independent of 7. This has the consequence that the sequence
AX(1), AY (1), AY(2),...,AY(q)

is a Markov chain and that the uniform distribution over non—zero differences
is a stationary distribution for this Markov chain, cf. [6].
A sequence («, By, (2, ..., 3;), considered as the value of

(AX(1), AY(1),AY(2),...,AY (i)
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is called an i-round characteristic. The probability
P(AY (i) = p | AX(i) = «)
of an ¢-round differential is just the sum of the probabilities
PAY(1) =(y,...,AY (i —1)=61,Y(#) = 5| AX(1) = )

of the i-round characteristics («, f1,...,05;_1,0) for all non-zero values of
b1, Ba, - .., Bi1. We will refer to these characteristics (a, 01, ..., 031, 3) as
belonging to the i-round differential (c, [3).

5.2.2 Some Details of the Differential Cryptanalysis of SAFER+

The attack by differential cryptanalysis on an r-round cipher relies on be-
ing able to find an (r — 1)-round differential whose probability is substan-
tially greater than the average probability of such a differential, which is
g ~ 2712 for a 16-byte block length. The existence of such a differential
is generally characterized by the existence of a characteristic belonging to it
that itself has a probability greater than this average differential probability.
The task of showing the security of r-round SAFER+ against differential
cryptanalysis is essentially that of showing that there are no (r — 1)-round
characteristics with probability greater than 27'%. An exhaustive study of
SAFER+ has shown that all 5-round characteristics have probability signif-
icantly smaller than 27'2® (but that this is not the case for only 4 rounds).
The conclusion is that SAFER+ with six or more rounds (but not fewer) is
secure against differential cryptanalysis.

Indeed, the matrix M of the linear layer, which was chosen to ensure
that SAFER+ enjoys good diffusion (i.e., to ensure that small changes in
round inputs cause large changes in round outputs) also ensures that “differ-
ences” similarly propagate and is the main source of the strength of SAFER+
against differential cryptanalysis. Let W(V) denote the number of non-zero
bytes in the vector V, which we will call the weight of V. Because the op-
eration of M is linear modulo 256 and because “differences” can be taken
conveniently as byte differences modulo 256 at the output of the nonlinear
layer in Fig. 2, diffusion is well measured by how well the PHT converts low
weight inputs into high weight outputs.

To achieve the desired diffusion, the matrix M was chosen to have the
following properties:
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1. Each odd-numbered row of the matrix M is a permutation of the vector
16 8444422222111 1 1], and each even-numbered row is a
permutation of the vector [8442222211111111]. This fact
results in two properties that strengthen the cipher against differential
cryptanalysis:

e Since the values 16, 8, 4, 2 and 1 are distributed almost “uni-
formly” over all columns of M, good diffusion takes place already
during one round.

e If the input to the matrix M is a vector S with weight W(S) = 1
whose single non-zero byte has the value 128, then the output
Y =S M will be a vector of weight either 5 or 8. This is impor-
tant because byte differences of 128 tend to have relatively high
probability.

2. A non-zero vector V. = [Vi, Vs, ... Vig], all of whose non-zero bytes
occur in position pairs (25 — 1,7), j € 1,2,...8, will be called a type-
A vector. If V. = [V}, V4, ..., Vig] is a type-A vector and its non-zero
bytes are all in its left half or all in its right half, then V will be called
a type-B vector. If V. = [Vi,V5,..., Vig] is a type-A vector and has
non-zero bytes in both its left half and in its right half, then V will be
called a type-C vector. The matrix M has the property that if S is a
type-B vector with weight 2 or 4, then the output Y =S M will be a
type-C vector with W(Y) > 4.

Both of these properties were exploited extensively in the above-mentioned
exhaustive study of 5-round characteristics for SAFER+-.

5.3 Strength against Linear Cryptanalysis

Linear cryptanalysis is a general attack against an iterative cipher that was
introduced by Matsui in 1993 [10]. Linear cryptanalysis has proved to be a
very effective general attack against ciphers in which the round subkeys are
inserted by modulo-two addition. However, linear cryptanalysis is in general
a weak attack against ciphers in which the round subkeys are inserted by
addition modulo a larger modulus [12]. In particular, linear cryptanalysis
is weak against the previous SAFER family of ciphers. With only three
rounds, cf. pp. 41-47 in [11], these ciphers have been shown to be secure
against linear cryptanalysis, cf. also [12] and [13].
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Because SAFER+ inherits the structural properties that make the pre-
vious SAFER family of ciphers strongly secure against linear cryptanalysis,
it is to be expected that SAFER+ likewise enjoys such security. In fact,
SAFER+ is even stronger against linear cryptanalysis than are the ciphers
in the previous SAFER family. With only two-and-one-half rounds, i.e., up
to the input of the invertible linear transformation in the third encryption
round, SAFER+ is already secure against linear cryptanalysis for the reasons
that we now sketch.

5.3.1 Some Details of the Linear Cryptanalysis of SAFER+

We follow here the terminology and notation in [11] and [12].

A binary-valued function is balanced if it takes on the value 0 for exactly
half of its possible arguments and the value 1 otherwise. An I/O sum S
for the i-th round of an iterative cipher is a modulo-two sum of a balanced
binary-valued function f; of the round input X® = Y (=1 and a balanced
binary-valued function g; of the round output Y@, i.e.,

SO = YY) @ gi(Y?)

where & denotes modulo-two addition, i.e., the XOR operation. 1/O sums
for successive rounds are said to be linked if the output function of each I/O
sum, except the last, coincides with the input function of the following 1/0
sum (i.e., g; = fiy1). When S1, S@ S0 are linked, then their sum is
also an [/O sum, namely

P
SU-r) = @ S0 = go(Y°) @ g, (Y,

=1

which is called a p-round I/O sum .

A homomorphism from a group (B", ®) onto the group (B, ®) is called
a binary-valued homomorphism for ®. The binary-valued function f is such
a homomorphism if f is not identically zero and if, for all U and V in B",
JUV)=fU)®f(V). An1/O sum for rounds i to j(j > 7) is homomorphic
if the input function is a binary-valued homomorphism for ®; and the output
function is a binary-valued homomorphism for ®;;.

The imbalance I(V') of binary random variable V' is the non-negative
real number [2P[V = 0] — 1| where P[V = 0] is the probability that V
takes on the value 0. The success of the attack by linear cryptanalysis on
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an r-round iterative cipher depends on being able to find an » — 1 round
homomorphic I/O sum with substantial imbalance. We have been able to
prove that Harpes’ procedure [11] for finding effective homomorphic 1/0
sums, which is the only practical procedure known, cannot find an I/O sum
with non-zero imbalance for one-and-one-half rounds of SAFER+. Based on
our experience, we believe that there is no homomorphic I/O sum whatsoever
with non-negligible imbalance for one-and-one-half rounds of SAFER+, i.e.,
SAFER+ is already secure again linear cryptanalysis after only two-and-one-
half rounds.

5.4 Other Analyses of SAFER+
5.4.1 Weak Keys

It is virtually certain that there are no “weak keys” in SAFER+ for any
reasonable definition of this somewhat elusive cryptanalytic concept. The
reason for this is the use of biases as described in Section 2.1.3 to “randomize”
the round subkeys produced from the user-selected key. For this reason,
there are no pairs of keys (such as binary complements) that have similar
encrypting or decrypting properties. The result is that no precautions must
be taken when selecting the input key for SAFER+; the best method is to
choose the key uniformly at random, i.e., by coin-tossing.

5.4.2 Trap Doors

There are no “trap doors” built into SAFER+ that would allow one privy
to knowledge of such a trap door to read encrypted traffic illicitly. The best
“proof” of this is given in the remark labelled “Transparency” in Section 6
below.

5.5 Previous Cryptanalyses

Although SAFER+ is a new cipher and has not yet been subject to crypt-
analysis except by its designers, there has been several cryptanalyses of the
previous SAFER family of ciphers. These are given in [4], [5], [8], [9], [11],
[12] and [13]. These cryptanalyses are all referred to within this document.
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6 Advantages and Limitations of SAFER+

The major advantages that would be offered by the choice of SAFER+ for
the Advanced Encryption Standard (AES) are:

e A proven track record of security-Many cryptanalysts in the pub-
lic arena have attacked the previous ciphers in the SAFER family since
their announcement in 1993. The only weakness found to date was in
the original key schedule, as described above in Section 3, which led to
a significantly improved key schedule that has been incorporated into
SAFER+. As a result of cryptanalyses that have already been carried
out, we may safely conclude that SAFER+ is secure against both dif-
ferential cryptanalysis and linear cryptanalysis (in the sense that these
attacks are not stronger than exhaustive key search), the two most
powerful general attacks on iterative block ciphers known today.

e Speed and simplicity—The simple structure of SAFER+, which is
based on byte operations only, makes it easy to implement correctly
even by inexperienced programmers. It also makes possible a host of
“tricks” that experienced programmers can use to speed up encryp-
tion and decryption. We expect that the “optimized” ANSI C imple-
mentations of SAFER+ included with this report will be significantly
accelerated as other programmers concern themselves with the imple-
mentation of SAFER+.

e TransparencyThe fact that the SAFER+ algorithm uses only well-
defined mathematical functions (rather than “random-looking” tables)
should convince any fair-minded person that there are no “trapdoors”
(i.e., hidden weaknesses) built into this cipher for the benefit of those
“in the know.” There are simply no suspicious steps anywhere in the
algorithm and every step has a clear cryptographic justification.

e Flexibility of Use-SAFER+ offers the same flexibility for usage as
does the Data Encryption Algorithm (DEA) of the Data Encryption
Standard (DES) [2]. In particular, it can be used in Electronic Code-
Book (ECB) mode, in Cipher Block Chaining (CBC) mode, in Cipher
FeedBack (CFB) mode and in Output FeedBack (OFB) mode in ex-
actly the same manner as the DEA. It can also be used in hashing in
accordance with the schemes described in [14]. SAFER+ can also be
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used to generate a Message Authentication Code (MAC) and to pro-
duce pseudo-random numbers in essentially the same manner that the
DEA can be used for these purposes.

It has not yet been done, but it would be easy to accomodate other
key lengths into SAFER+ besides those adopted in this document (16
bytes, 24 bytes and 32 bytes) should this be desirable for some reason.
However, it is not possible to change the block length from its present
16 bytes without a complete redesign of the algorithm.

e Flexibility of Environment-SAFER+ was designed to implement
easily on any platform from an 8-bit processor upwards. The computa-
tional efficiency data given in Section 4 are evidence of this flexibility.
The fact that only byte operations are performed within the algorithm
and that its memory requirements are small makes it attractive for use
on smart cards with 8-bit processors, in ATM, for HDTV, in B-ISDN,
in voice applications, aboard satellites, and in virtually any other en-
vironment where encryption might be desirable.

The limitations of SAFER+ are:

e No proof of complete security—As for every cipher today in which
the key is used more than once, there is no proof that SAFER+ is not
vulnerable to some attack of a kind not as yet known.

e Encryption/Decryption Dissimilarity—The fact that SAFER+ is
a general substitution/linear-transformation cipher, as was explained
in Section 3 above, implies that its decrypting algorithm differs from
the encrypting algorithm by more than just a change in the key sched-
ule. However, it should be clear from Sections 2.1.1 and 2.1.2, as well
as from Figs. 2 and 3, that there are substantial similarities between
the encrypting and decrypting algorithms of SAFER+ so that one need
pay only a small price in software or hardware for implementing both.
Moreover, as was discussed in Section 3 above, this dissimilarity of
encryption and decryption in SAFER+ was a source of desirable addi-
tional freedom in designing this cipher.
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7 Intellectual Property Rights

SAFER+ is a completely non-proprietary algorithm. Neither Cylink Corpo-
ration nor any of the inventors have retained any intellectual property rights.
The C and Java programs included in this report and the submitted diskettes
are not copyrighted.

8 Diskettes Submitted with This Proposal

Diskette #1 of 6—PDF file of this document.

Diskette #2 of 6—ANSI C Reference Code for SAFER+.

Diskette #3 of 6—Optimized ANSI C Implementation of SAFER+.

Diskette #4 of 6—Optimized Java Implementation of SAFER+.

Diskette #5 of 6—Test Values for SAFER+.
Diskette #6 of 6—HDL Implementation of SAFER+.
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Rotate each byte left by 3 bit positions

Sum bytes
bit-by-bit
modulo two

\/ \/ ;

vy v v ¥ Select bytes
1 2 . 23 24 25 > 23,..1516,17
vy v vy
Rotate each byte left by 3 bit positions B
'R’ v v oy Select bytes
1 2 c 23 24 25 > 34,..16,17,18
vy v v v !
Rotate each byte left by 3 bit positions Bs
! ! v v v Select bytes
1 2 S 23 24 25 45,...,17,18,19
v v v oy
Rotate each byte |eft by 3 bit positions B,
vy VoY oy
v vy
Rotate each byte |eft by 3 bit positions
vy v v oy Select bytes
1 2 e 23 24 25 25,1,2,...,14,15

@ denotes bytewise modulo 256 addition of 128 bit

Fig. 5: SAFER+ key schedulefor 192 bit key.

— K,



User-Selected Key (32 Bytes) Select bytes
1 2 31 32 |/ ™ 1,2,..,14,15,16
» | Sum bytes
> | bit-by-bit
> | modulo two
\ J \/ \/ \ J {

Rotate each byte left by 3 bit positions

' | Y v v
1 2 31 32 33 |—»| Selectbytes —@—> Kz
2,3,...,15,16,17
vy v v v
Rotate each byte left by 3 bit positions B2
vy vV v
1 2 31 32 33 | Selectbytes —>@—> Ks
34,..,16,17,18
vy v v v !
Rotate each byte left by 3 bit positions Bz
vy vV v
1 2 31 32 33 || Selectbytes »@—» Ky
45,...,17,18,19
vy vV v
Rotate each byte left by 3 bit positions B4
vy BRI
vy vV
Rotate each byte left by 3 bit positions
vy v v v
1 2 31 32 33 |—»| Sclectbytes »@» Kss
33,1,2,...,14,15

@ denotes bytewise modulo 256 addition of 128 bit

Fig. 6: SAFER+ key schedulefor 256 bit key.



