
 

 

 

 

LDAP Injection

Are your web applications vulnerable? 

By Sacha Faust 

 



    
 
 

Table of Contents 
Web Applications and LDAP Injection ...................................................................................... 3 

Background .............................................................................................................................. 3 

Environment ............................................................................................................................. 3 

LDAP Query Introduction ........................................................................................................... 3 

Attacking LDAP Search Queries................................................................................................ 5 

Understanding the Query Construction.................................................................................... 5 

Generating Attacks................................................................................................................. 10 

Prevention.................................................................................................................................. 13 

Incoming Data Validation ....................................................................................................... 13 

Outgoing Data Validation ....................................................................................................... 14 

LDAP Configuration ............................................................................................................... 14 

About SPI Labs.......................................................................................................................... 15 

About SPI Dynamics ................................................................................................................. 15 

About the WebInspect Product Line ....................................................................................... 16 

About the Author....................................................................................................................... 16 

Contact Information .................................................................................................................. 16 

Appendix A: LDAP References................................................................................................ 17 

Appendix B: Further Reading .................................................................................................. 17 

Appendix C: Example Source Code ........................................................................................ 18 

Appendix D: LDAP Search Filter Syntax................................................................................. 20 

 
 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 2 



   
 

Web Applications and LDAP Injection 
Lightweight Directory Access Protocol (LDAP) is a widely used protocol for accessing 
information directories. LDAP injection is the technique of exploiting web applications 
that use client-supplied data in LDAP statements without first stripping potentially 
harmful characters from the request. The objective of this paper is to inform developers, 
system administrators and security professionals about various techniques that could be 
used to attack their applications. It also describes preventive measures for protecting 
applications from these intrusions. 

Background 
Readers should have a basic understanding of LDAP technology and web application 
parameter injection. For background information, see the SPI Labs white paper “SQL 
Injection: Are Your Applications Vulnerable?” 

Environment 
The example used in this white paper was written using Active Server Page (ASP) 
under Microsoft Information Server (IIS) and making use of the LDAP control written 
by nSoftware. The back-end LDAP server used is SunOne Directory Server 5.0. 

LDAP Query Introduction 
Before discussing how to attack web applications using LDAP, let’s review some of the 
basics of how LDAP search queries are constructed and what to expect in return. Let’s 
look at how the example application used in this paper construct its queries and how it 
deals with the data returned. 

The example application (see Appendix C: Example Source Code) simply takes a query 
argument called “user” and searches the LDAP directory for the user’s cn (common 
name), mail, and telephone number attributes. Once the data is returned, the application 
displays the information to the user, as illustrated in Figure 1.  

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 3 

http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf.
http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf.
http://www.nsoftware.com/products/controls/?ctl=LDAP&prod=ipwasp
http://www.nsoftware.com/


   
 

 

Figure 1: Normal application processing. 

To examine how the application constructs the query, let’s use the debug switch in the 
query string. Figure 2 displays the underlying LDAP query construction based on the 
user information. 

 

Figure 2: Normal search operation with debug information. 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 4 



   
 

According to the displayed debug information, the application searches the 
ou=people,dc=spilab,dc=com tree of the directory for the attributes cn, mail and 
telephoneNumber. The filter part is a bit more complicated and provides the mechanism 
for LDAP injections. The filter used in the application is uid = user_supplied_value, 
where the value is sfaust. For more information about the syntax of LDAP search filters, 
refer Appendix D: LDAP Search Filter Syntax or the Microsoft MSDN topic available 
at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/netdir/adsi/search_filter_syntax.asp 

Attacking LDAP Search Queries 
The most widely use of LDAP in web applications is to enable users to easily search for 
specific data on the Internet. For example, a college or university might electronically 
publish white pages that allow users to find information about students and teachers. As 
illustrated in Figure 3, the example LDAP-enabled Web application (Appendix C) 
displays specific information about a user by accepting the user name in a query 
argument. 

 

Figure 3: Normal search operation. 

Understanding the Query Construction  
Now that we have a basic understand of what the application does, let’s examine how 
the application is constructing the LDAP query to get the information. The first step 
should be to determine if the application is attempting any type of validation on the data 
sent by the user. To test for this, we can send a few requests with unusual characters and 
see how the application reacts to them. Figures 4 and 5 illustrate these simple requests.  

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 5 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netdir/adsi/search_filter_syntax.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netdir/adsi/search_filter_syntax.asp


   
 

 

Figure 4: First test for user input validation. 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 6 



   
 

 

Figure 5: Second test for user input validation. 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 7 



   
 

In the first validation test, the probe sends data that even the least sophisticated data 
validation routine would reject (as seen in Figure 4). In the second test, the probe sends 
a request that might look like a valid character in an LDAP query string (as seen in 
Figure 5). The returned data illustrated in Figures 4 and 5 indicate that the application is 
not validating the data passed in the query and is storing the value directly into the 
LDAP object. Since the data is injected in the query, the application returns an error 
because of the invalid LDAP query created. This test application also sends a closing 
parenthesis, but it could use any valid filter character such as the following:  | (  &.  

Having identified the type of validation performed by the target application, the attacker 
can reverse-engineer the structure of the LDAP query to determine how the user-
supplied data is used to perform the search. The LDAP search filters are always 
enclosed between parentheses (see Appendix D: LDAP Search Filter Syntax for more 
information). To locate the data in the filter string, try to generate valid LDAP filters by 
adding a few valid characters to the beginning and end of the argument value, and then 
examine the response.  

If the application reports an error, the probe is generating an invalid request. If the 
application returns without errors or with new data, the probe has created a valid query. 
This process can be time-consuming depending on the size of the query and the number 
of arguments sent. Figures 6 and 7 present a few examples. 

 

Figure 6: Sending “ | ” returns no errors and no data. 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 8 



   
 

 

Figure 7: Sending ampersand (%26) returns no errors and no data. 

As illustrated in Figures 6 and 7, we can see how the query is structured by sending 
logical operators such as OR and AND. The actual query substitutes the symbols “ | ” 
for OR and “&” (URL-encoded as %26, to prevent the target application from 
interpreting the operator as query name/value separator) for AND. Because the target 
application does not return an error, the injected values must have created a valid query. 
With that information in mind and by looking at the LDAP query syntax, the attacker 
can conclude that the application generates a query in the following format:  (some 
attribute=user input). The injected value in Figure 6 would generate (some attribute=user 
input|). In Figure 7, the injected value would generate (some attribute=user input&). Both 
are valid queries that return no values.  

To verify these assumptions, try to get the cn value of the user sfaust. This requires 
injecting data to generate a query that looks like (some attribute=user input)(|(cn=*)), which 
instructs the server to return any cn values. Since the assumption is that the query looks 
like (some attribute = user input), to get (some attribute=user input)(|(cn=*)), we will need to 
inject sfaust)(|(cn=*). Figure 8 illustrates the actual string and the results of the query. 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 9 



   
 

 

Figure 8: Getting the cn value of the user. 

In this example, the injection works, confirming the assumptions about the structure of 
the query. 

Generating Attacks 
Having determined the structure of the query, we can generate additional attacks to 
access more information. First, we need to discover what attributes are available by 
querying the LDAP server to obtain an objectclass listing. Then, simply refer to 
http://docs.sun.com/source/816-6699-10/objclass.html to see the attributes included in 
each objectclass. If the objectclass listed is not on the above site, you can usually find 
the information by searching the Internet with your favorite search engine. Figure 9 
shows the list of available objectclasses for our user. 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 10 

http://docs.sun.com/source/816-6699-10/objclass.html


   
 

 

Figure 9: Getting a list of available objectclasses. 

Now that we have a list of objectclasses, we can pick one and see if we have rights to 
view the data. This example uses the posixAccount objectclass, but any could contain 
interesting information. By looking at the class definition in RFC 2307, we see that the 
following attributes are required and should be available. 

� cn 

� uid 

� uidNumber 

� gidNumber 

� homeDirectory 

In theory, we should be allowed to see any of these attributes. Figure 10 illustrates the 
attempt to get the home directory of the user sfaust. 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 11 

http://www.ietf.org/rfc/rfc2307.txt


   
 

 

Figure 10: Getting the home directory for user sfaust. 

Bingo! We now know that we can view the attributes of the posixAccount objectclass. 
We can apply the same techniques to all the objectclasses and obtain the data.  

To obtain a listing of all the users on the system (and view their settings), simply use a 
wildcard character as the user value. Figure 11 illustrates this request and the 
subsequent response. 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 12 



   
 

 

Figure 11: Getting a listing of all users. 

Prevention 
Protecting LDAP-enabled web applications demands the effort of developers as well as 
the LDAP administrators. Though effective at reducing the risk of such an attack, the 
approaches discussed in the next section are not complete solutions. It is best to 
remember that web application security, by its own definition, must be a continually 
evolving process.  As hackers change their methodologies, so must those who want to 
implement a secure Web application.  

Incoming Data Validation 
All client-supplied data needs to be cleaned of any characters or strings that could 
possibly be used maliciously. This should be done for all applications, not just those 
that use LDAP queries. Stripping quotes or putting backslashes in front of them is 
nowhere near enough. The best way to filter data is with a default-deny regular 
expression that includes only the type of characters that you want. For instance, the 
following regular expression will return only letters and numbers: 

s/[^0-9a-zA-Z]//g  

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 13 



   
 

Make your filter as specific as possible. Whenever possible use only numbers. After 
that, numbers and letters only. If you need to include symbols or punctuation of any 
kind, make absolutely sure to convert them to HTML substitutes (such as “ &quote; ” or “ 
&gt; ”). For instance, if the user is submitting an email address, allow only the “at” sign, 
underscore, period, and hyphen in addition to numbers and letters, and only after those 
characters have been converted to their HTML substitutes.  

Outgoing Data Validation 
All data returned to the user should be validated and the amount of data returned by the 
queries should be restricted as an added layer of security. 

LDAP Configuration 
Implementing tight access control on the data in the LDAP directory is imperative, 
especially when configuring the permissions on user objects, and even more importantly 
if the directory is used for single sign-on solution. You must fully understand how each 
objectclass is used and decide if the user should be allowed to modify it.  Allowing 
users to modify their uidNumber attribute, for example, may let the user change access 
levels when accessing systems. The access level used by the Web application to connect 
to the LDAP server should be restricted to the absolute minimum required. That way, 
even if an attacker manages to find a way to break the application, the damage would be 
limited. In addition, the LDAP server should not be directly accessible on the Internet, 
thereby eliminating direct attacks to the server itself. 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 14 



   
 

About SPI Labs 
SPI Labs is the dedicated application security research and testing team of SPI 
Dynamics. Composed of some of the industry’s top security experts, SPI Labs is 
focused specifically on researching security vulnerabilities at the web application layer. 
The SPI Labs mission is to provide objective research to the security community and all 
organizations concerned with their security practices. 

SPI Dynamics utilizes direct research from SPI Labs to provide daily updates to 
WebInspect, the leading Web application security assessment software. “Zero-day” 
vulnerability commitment gives customers immediate access to the most up-to-date 
technology available to identify potential vulnerabilities within their Web applications 
and servers. 

SPI Labs engineers comply with the standards proposed by the Internet Engineering 
Task Force (IETF) for responsible security vulnerability disclosure. SPI Labs policies 
and procedures for disclosure are outlined on the SPI Dynamics web site at: 
http://www.spidynamics.com/spilabs.html. 

SPI Labs is directed by Caleb Sima, SPI Dynamics co-founder and chief technology 
officer. 

About SPI Dynamics 
SPI Dynamics, the expert in web application security assessment, provides software and 
services to help enterprises protect against the loss of confidential data through the web 
application layer. The company's flagship product line, WebInspect, assesses the 
security of an organization's applications and web services, the most vulnerable yet least 
secure IT infrastructure component. Since its inception, SPI Dynamics has focused 
exclusively on web application security. SPI Labs, the internal research group of SPI 
Dynamics, is recognized as the industry's foremost authority in this area.  

Software developers, quality assurance professionals, corporate security auditors and 
security practitioners use WebInspect products throughout the application lifecycle to 
identify security vulnerabilities that would otherwise go undetected by traditional 
measures such as automated application testing tools, network firewalls, intrusion 
detection systems, or manual code reviews. The security assurance provided by 
WebInspect helps Fortune 500 companies and organizations in regulated industries — 
including financial services, health care and government — protect their sensitive data 
and comply with legal mandates and regulations regarding privacy and information 
security.  

SPI Dynamics is privately held with headquarters in Atlanta, Georgia 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 15 



   
 

About the WebInspect Product Line 
The WebInspect product line ensures the security of your entire network with intuitive, 
intelligent, and accurate processes that dynamically scan standard and proprietary web 
applications to identify known and unidentified application vulnerabilities. WebInspect 
products provide a new level of protection for your critical business information. With 
WebInspect products, you find and correct vulnerabilities at their source, before 
attackers can exploit them.  

Whether you are an application developer, security auditor, QA professional or security 
consultant, WebInspect provides the tools you need to ensure the security of your web 
applications through a powerful combination of unique Adaptive-Agent™ technology 
and SPI Dynamics’ industry-leading and continuously updated vulnerability database, 
SecureBase™. Through Adaptive-Agent technology, you can quickly and accurately 
assess the security of your web content, regardless of your environment. WebInspect 
enables users to perform security assessments for any web application, including these 
industry-leading application platforms: 

� IBM WebSphere  
� Macromedia ColdFusion  
� Lotus Domino  
� Oracle Application Server  
� Macromedia JRun  
� BEA Weblogic  
� Jakarta Tomcat  

About the Author 
As a senior research and development engineer at SPI Dynamics, Sacha Faust is 
responsible for researching new techniques for web auditing, conducting source code 
reviews to find vulnerabilities, and securing web applications. He may be reached via 
e-mail at sfaust@spidynamics.com. 

Contact Information 
SPI Dynamics  Telephone: (678) 781-4800  

115 Perimeter Center Place  Fax: (678) 781-4850  

Suite 270  Email: info@spidynamics.com  

Atlanta, GA 30346 Web: www.spidynamics.com  
 

 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 16 

mailto:sfaust@spidynamics.com


   
 

Appendix A: LDAP References 
For more information on LDAP, refer to these additional resources. 

RFC 1960 - A String Representation of LDAP Search Filters 
http://www.ietf.org/rfc/rfc1960.txt 

LDAP Overview 
by Bruce Greenblatt, http://www.directory-applications.com/ldap3_files/frame.htm 

Understanding LDAP 
by IBM, http://www.redbooks.ibm.com/redbooks/SG244986.html 

LDAPMAN web site 
http://ldapman.org/ 

Appendix B: Further Reading 
Introduction to LDAP Security 
http://www.severus.org/sacha/docperso/intro_to_ldap_tisc.htm 

SunOne schema – good link for objectclass definitions 
http://docs.sun.com/source/816-6699-10/objclass.html 

Understanding and Deploying LDAP Directory Services  
by Tim Howes, Timothy A. Howes, Mark C. Smith, Gordon S. Good 
ISBN: 0-672-32316-8 

LDAP: Programming Directory-Enabled Applications With Lightweight Directory 
Access Protocol  
by Tim Howes, Mark Smith. 
ISBN: 1-57870-000-0 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 17 

http://www.ietf.org/rfc/rfc1960.txt
http://www.directory-applications.com/ldap3_files/frame.htm
http://www.redbooks.ibm.com/redbooks/SG244986.html
http://ldapman.org/
http://www.severus.org/sacha/docperso/intro_to_ldap_tisc.htm
http://docs.sun.com/source/816-6699-10/objclass.html


   
 

Appendix C: Example Source Code 
This is the source code of the ldap-search.asp file used in this whitepaper. 

<html> 
<body> 
<%@ Language=VBScript %> 
<% 
 Dim userName 
 Dim debug 
 Dim filter 
 Const LDAP_SERVER = "ldaptest.spilab.com"  ‘you need to point to your ldap server 
 debug = False 
 if( Request.QueryString("debug") <> "" ) then 
  debug = CBool(Request.QueryString("debug")) 
 end if 
 userName = Request.QueryString("user") 
 if( userName = "" ) then 
  Response.Write("<b>Invalid request. Please specify a valid user name</b><br>") 
  Response.End() 
 end if 
 if( debug ) then 
  Response.Write("userName = " + userName + "<br>") 
 end if 
 filter = "(uid=" + CStr(userName) + ")"  ' searching for the user entry 
 if( debug ) then 
  Response.Write("filter = " + filter + "<br>") 
 end if 
 Call PerformSearch(filter) 
 Sub PerformSearch( filter ) 
  Dim ldapObj 
  'Creating the LDAP object and setting the base dn 
  Set ldapObj = Server.CreateObject("IPWorksASP.LDAP") 
  ldapObj.ServerName = LDAP_SERVER 
  ldapObj.DN = "ou=people,dc=spilab,dc=com" 
  'Setting the search filter 
  ldapObj.SearchFilter = filter 
  'Setting the attributes we are looking for 
  ldapObj.AttrCount = 3 
  ldapObj.AttrType(0) = "cn" 
  ldapObj.AttrType(1) = "mail" 
  ldapObj.AttrType(2) = "telephoneNumber" 
  if( debug ) then 
   Response.Write("search sase = " & ldapObj.DN & "<br>") 
   Response.Write("ldap search filter = " & ldapObj.SearchFilter & "<br>") 
   Dim searchAttrStr 
   For i = 0 To ldapObj.AttrCount -1 
    if( i = 0 ) then  ' for cleaner output 
     searchAttrStr = "ldap search attributes = " &  

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 18 



   
 

ldapObj.AttrType(i) 
    else 
     searchAttrStr = searchAttrStr & " , " & 
ldapObj.AttrType(i) 
    end if 
   Next 
    
   if( i > 0 ) then 
    Response.Write(searchAttrStr & "<br>" ) 
   end if 
  end if 
  ldapObj.Search 
  'Showing the user information 
  While ldapObj.NextResult = 1 
   Response.Write("<p>") 
   Response.Write("<b><u>User information for : " + ldapObj.AttrValue(0) + 
"</u></b><br>") 
   For i = 0 To ldapObj.AttrCount -1 
    Response.Write("<b>" + ldapObj.AttrType(i) + "</b> : " + 
ldapObj.AttrValue(i) + "<br>" ) 
   Next 
   Response.Write("</p>") 
  Wend 
 End Sub 
%> 
</body> 
</html> 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 19 



   
 

Appendix D: LDAP Search Filter Syntax 
This was obtained from RFC 1960 

<filter> ::= '(' <filtercomp> ')' 
<filtercomp> ::= <and> | <or> | <not> | <item> 
<and> ::= '&' <filterlist> 
<or> ::= '|' <filterlist> 
<not> ::= '!' <filter> 
<filterlist> ::= <filter> | <filter> <filterlist> 
<item> ::= <simple> | <present> | <substring> 
<simple> ::= <attr> <filtertype> <value>  
<filtertype> ::= <equal> | <approx> | <ge> | <le> 
<equal> ::= '=' 
<approx> ::= '~=' 
<ge> ::= '>=' 
<le> ::= '<=' 
<present> ::= <attr> '=*' 
<substring> ::= <attr> '=' <initial> <any> <final> 
<initial> ::= NULL | <value> 
<any> ::= '*' <starval> 
<starval> ::= NULL | <value> '*' <starval> 
<final> ::= NULL | <value> 

 

I also recommend taking a look at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/netdir/adsi/search_filter_syntax.asp 

 

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission. 
 

Page 20 

http://www.ietf.org/rfc/rfc1960.txt
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netdir/adsi/search_filter_syntax.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netdir/adsi/search_filter_syntax.asp

	Web Applications and LDAP Injection
	Background
	Environment

	LDAP Query Introduction
	Attacking LDAP Search Queries
	Understanding the Query Construction
	Generating Attacks

	Prevention
	Incoming Data Validation
	Outgoing Data Validation
	LDAP Configuration

	About SPI Labs
	About SPI Dynamics
	About the WebInspect Product Line
	About the Author
	Contact Information
	Appendix A: LDAP References
	Appendix B: Further Reading
	Appendix C: Example Source Code
	Appendix D: LDAP Search Filter Syntax

