| ntroduction to the new AES St andar d:
Ri j ndael

Paul Doni s

This paper will explain howthe Rijndael Ci pher Reference
Code in C works.

Ri j ndael is a block cipher that encrypts and decrypts 128,
192, and 256 bit bl ocks, using 128, 192, and 256 byte keys
I n any conbination. The block is considered to be
structured as 4, 6, or 8 colums of 4 bytes, depending on
bl ock si ze.

The basic operations applied to the bl ock are:

1) KeyAddittion: XORing each byte with a round key (done
before the first round for “whitening,” and again at the
end of each round),

2) Substitution: Applying an S-box (substituting each
byte with anot her, based on an equation in GF(2"8)),

3) ShiftRow. Shifting the rows in a circular way, the
anmount of shift (0, 1, 2, 3, or 4 bytes) depending on the
position fromthe top and on the bl ock size, and

4) M xColum: Mxing the 4, 6, or 8 colums vertically
by taking invertible Iinear conbinations (in G-(2"8) of
the elenments in each col um.

In ternms of the above operations, the top | evel structure
of Rijndael is:

KeyAddi ti on

Substitution
Shi f t Row
M xCol umm
KeyAddi ti on

Substitution
Shi f t Row
M xCol umm
KeyAddi ti on

Substitution

Shi f t Row
M xCol unn
KeyAddi ti on
Substitution
Shi f t Row
KeyAddi ti on

The nunber of rounds depends on the bl ock and key sizes.
For Bl ock and Key sizes both of 128 bits, there are 10
rounds, nine regular rounds, and one short round at the
end wi t hout M xCol um.

If either the Block or Key size is 192, but not 256, bits,
there are 12 rounds. |If either the Block or Key is 256
bits, there are 14 rounds.

The reason there is no MxColum in the last round is to
make the structure, when starting at the bottom and
wor ki ng up, simlar the structure going down. This nmakes
It possible the use the sanme code or circuitry, wth
relatively m nor changes, for both encryption and
decryption.

To understand the operations used above, we need sone
mat hemat i cal background, which assunes only that the
reader knows the basic concept of integers (nod n).

The F in GF(278) stands for Field. Exanples of fields are
conpl ex nunbers and integers nod p (p prine). A field has
a set of objects which can be conbined by either of two
operations (addition and nmultiplication) to produce other
objects in the set. There is an additive identity (when
added to a nunber changes nothing, i.e. ‘zero’), there is
a nultiplicative identity i.e. ‘one’. There is an
additive inverse (mnus the nunber), and there is a

mul tiplicative inverse (x~-1) for all nunbers except the
additive identity i.e. except for ‘zero’. There is a
distributive law. a*(c + b) = a*c + a*b. W know that the
nunbers nod 26 = 2 * 13 do not have a multiplicative

i nverse for two (two tines anything is even and wll never
give a renai nder of one when divided the even 26). So the
requi renment that p be prine is essential.

The G stands of Evariste Galois, who, before dying in a
duel at age 20, proved that all fields, which are finite,
have a limted set of possible structures. Watever the
details of how we represent them for a set of nunbers p
(prinme) and n, all G-(p”n) work the sanme (are isonorphic).

For us, p =2, and n = 8. That neans that the el enents of
our GF are represented as polynom als of degree |ess than
eight in nunbers (nod 2). Since nunbers (nod 2) are
either O or 1, there is a direct correl ation between the
sequence of polynom al coefficients and the bits in a
byte. Here is an exanpl e:

X6 + XM + x"2 + x + 1 ="'57 in Hex
=01010111 in Binary

Just as with integers, we can have nodulo arithnetic in
these polynomials. In integer nodulo arithnetic, the
nunmbers 123, 13, and 20003 are all = 3 (nod 10). To

di scover that all the “large” nunbers were equal to 3 (nod
10), we divided by 10 (the nodul us) and kept the

remai nder. In integer nodulo arithnetic, the nodul us has
to be a prine for us to have nultiplicative inverses of

all non-zero nunbers.

The sane is true for polynom als; we need the equival ent
of a prinme for polynomals. The creators of Rijndael have
sel ected one for us:

mx) = x*"8 + x4 + x*"3 + x +1 =*"11B Hex
=100011011 in Binary

Thi s polynom al m(x) cannot be factored (is irreducible),
and makes nultiplicative inverses possible, because it
acts like a prine did in (nod p) integer arithnetic.

HERE | S THE BI G3 E:

We define a new arithnetic on bytes by seeing them as
coefficients of polynomals nod the above pol ynom al nm(x).
Just as in (nod p) arithnetic with integers, where we
divide to get a renainder snmaller than the nodulus, if we
have a pol ynom al of degree nore than seven, we divide by
m x) to get a polynom al of degree less than eight. Since
m x)is of degree eight, the remainder will be of degree
seven or |ess.

So how does addition work?

0+0=0

1+0=1

0+1=1
1+1=2=0 (nmod 2)
1-1=0=1+1(nod 2)

It turns out that addition and subtraction are the sane,
and equivalent to bit-wse XOR Since, in polynom al

addition, coefficients of correspondi ng power are added,
adding two bytes is the sane as byte-w se XOR

To do products, we need to do pol ynom al products, using
the normal rules of polynom al al gebra, and reduce the
result nmod m(x). For exanple, 5 * 3 is:

(x"2 + 1)*(x*1 + 1) = [00000101] *[00000011]
= x"3 + x*"2 + x*1 + x*0 = [00001111]

Nine tines two i S:

(xA3 + 1)*(x*1) = [00001001] *[00000010]
= x4 + x*1 = [00010010]

So a product of a “small” nunber by two is a left shift of
one. How convenient! “Small” neans that the shift does
not overflowto x*8; if it overflows, mx) nust be
subtract ed.

To see what that nod nm(x) is all about, let us | ook at the
powers of two.

These are powers of two nod 100011011 in G(278).

00000001 00000010 00000100 00001000
00010000 00100000 01000000 10000000
00011011 00110110 01101100 11011000
01111011 11110110 11110111 11110101
11110001 11111001 11101001 11001001...

Noti ce what happens in the third row Pretend there is a
one bit to the left, and conpare with nm(x). The start of
the fourth rowis the last elenent of the third row
shifted left and added (XORed) to m(x).

In practice, if space permts the use of tables, we can
use tables of logs to do products. That is done in this

I npl enmentation of Rijndael. Because n(x) acts like a
prime, we have an el enent (generator) for which the powers
fromO to 255 run through all possible values of byes.
Thus, logs are possible. Let us |look at the tables of

| ogs and anti-|ogs (exponentials) used and see if we can
figure out the chosen base.

wor d8 Logt abl e[256] = {
0, 0, 25, 1, 50, 2, 26, 198,
75, 199, 27, 104, 51, 238, 223, 3,
100, 4, 224, 14, 52, 141, 129, 239,
76, 113, 8, 200, 248, 105, 28, 193,
125, 194, 29, 181, 249, 185, 39, 106,

wor d8 Al ogt abl e[256] = {

1, 3, 5 15, 17, 51, 85, 255,
26, 46, 114, 150, 161, 248, 19, 53,
95, 225, 56, 72, 216, 115, 149, 164,

247, 2, 6, 10, 30, 34, 102, 170,
229, 52, 92, 228, 55, 89, 235, 38,

The first row of the log table is the |ogs of:

o, 1, 2, 3, 4, 5, 6, etc. Zerois arbitrarily given a | og
of zero, and we check for zero before using the |og
tables. Log 1 =0, OK W see alog of 1 at the 3
position. So the base to power one is three, i.e. the
base is three. W see that base squared is 5. It |ooks
funny, but in polynomal arithnetic, it is:

[00000011] for the one bit in three
[00000011] for the two bit in three (remenber the shift)
[000000101] nod M changes nothing for power |ess than 8

[00000101] this is five, and the table is correct.

In the anti-log table, the third position (start with 0)
is 15, and we see a three in the 15'" (start with 0)
position in the |log table.

This is the start of the Substitution Bl ock for
encryption.

wor d8 S[256] = {
99, 124, 119, 123, 242, 107, 111, 197,
48, 1, 103, 43, 254, 215, 171, 118,
202, 130, 201, 125, 250, 89, 71, 240,
173, 212, 162, 175, 156, 164, 114, 192,
183, 253, 147, 38, 54, 63, 247, 204,

Let's ook at the code. This is reference code for
ease of understanding and for checking the validity
of inplenmentation of optimzed code. The optim zed
code conbi nes sone steps.

Notice that in the first block the nunbers add to O
(mod 4) in each row, to O (nod 6) in the next

bl ock, and to O (nod 8) in the last block. These
nunbers are the shift row (encryption) and reverse
shift row (decryption) tables. The first colum is
used for encryption, and the second for decryption.

My comrents are in capital letters.
THESE TABLES DETERM NE THE AMOUNT OF SHI FT I N EACH ROW

static word8 shifts[3][4][2] = {
0,

Ph®Oo

wnNE

wnhEo
whkoo

il i
PONO

TH'S IS USED TO DO PRODUCTS W TH LOG AND ANTI LOG TABLES.

wor d8 mul (word8 a, word8 b) {
[* multiply two el enments of G-(2"m)
* needed for M xColum and | nvM xCol um
*/
if (a & b) return Al ogtabl e[(Logtable[a] +
Logt abl e[b]) %255] ;
el se return O;
}

TH'S DOES KEY ADDI TION. FOR 128 BITS, TH S COULD BE DONE
AS FOUR 32 BIT XCR S. “BC' IS THE NUMBER OF COLUWNS I N A
BLOCK, EITHER 4, 6, OR 8. “MAXBC' IS SET TO 8; IF YOQU
WANTED TO ALLOW BLOCK SI ZES OF 512, YOU WOULD SET I'T TO 16.

voi d KeyAddition(word8 a[4] [MAXBC], word8 rk[4][MAXBC],
wor d8 BC) {

/* Exor corresponding text input and round key i nput
byt es

*/

int i, j;

for(i =0; i < 4; i++)
for(j =0, j <BGC j++) a[il[j]l "= rk[i][j];

THI'S DOES ROW SHI FT. NOTI CE THAT d PI CKS THE DI RECTI ON I N
THE SH FTS MATRI X.

void Shift Row(word8 a[4] [MAXBC], word8 d, word8 BC) {
/* Row O remai ns unchanged
* The other three rows are shifted a variabl e anpunt

*/

wor d8 t np[MAXBC] ;

int i, j;

for(i = 1; < 4; i++) {

i
for(j =0; j <BGC j++) tnp[j] = a[i][(] +
shifts[SC[i][d]) % BC];
\ for(j =0; j <BGC j++) a[il[j] = tnp[j];

}

TH'S IS A TABLE LOCKUP TO APPLY THE S- BOXES.

voi d Substitution(word8 a[4][MAXBC], word8 box[256], word8
BO) {
/* Replace every byte of the input by the byte at that

pl ace
* in the nonlinear S-box
*/
int i, j;
for(i = 0; i < 4; i++4)
for(j =0; j <BC j++) a[i][j] = box[a[i][]j]]
}

NOTE THE MULI TPLI CATI ONS BY 2 AND 3. THEY RELATE TO THE
M XI NG MATRI X BELON HERE THE COLUMN ELEMENTS ARE TREATED
AS COEFFI Cl ENTS OF POLYNOM ALS OF DEGREE LESS THAN FOUR
MDD MX) = X4 + 1.

voi d M xCol um(word8 a[4] [MAXBC], word8 BC) {
/* Mx the four bytes of every colum in a |linear

way
*/
wor d8 b[4] [MAXB(C] ;
int i, j;
for(j =0; j <BGC j++)
for(i = 0; i < 4; i++4)
bli][j] = mul(2,a[i][j])
Al (3,a[(0 + 1) %4][)])
~al(ih +2) %Aa][j]
~al(ih o+ 3) %4a][j];
for(i 0; 1 < 4; 1++)
} for(j =0; j <BC j++) ali]ll[j] = b[il[j];

This is the Mxing Matrix for the M x
Col ums st ep.

WkFEFEDN
RPN
RN WP
NWE -

It is derived fromthis M xing Pol ynom al :
‘03" x"3 + ‘01l'x"2 + ‘01’ x + ‘02

This M xing Polynomal is relatively co-
prime with a new Mddul us Pol ynom al :

MX) = ‘01"X" + ‘01" = X" + 1.

Notice that the coefficients of the M xing
Pol ynom al are ‘03, ‘01', and ‘02'. They
are eight bits in length. They obey the
rules of arithnetic set out at the start.
MX) is used as a nodulus for arithnetic of
pol ynom al s of degree less than four in

el ements of the previously defined G-

Notice that the previously defined | owner
case nm(x) is of degree 8, and x is 0 or 1.

The new upper case M X) is of degree four,
and X is an elenment of the previously
defined G- This X is a byte in a colum
that is to be m xed.

The polynomal MX) = X* + 1 is used for
t he nodul us, because it gives rise to the
property that:

X * (a*x"3 + b*x"2 + c*x + d)
= b*x”"3 + ¢c*x"2 + d*x + a (nod (x"4 +1))

It is acircular left shift of the
coefficients. To see this, performthe
product and “subtract” a * (x*"4 + 1) to
reduce the degree to | ess than four.
Renmenber that a = -a (add and subtract are
the sane in the G- defined earlier). This
shifting property is the reason that the
rows of the Mxing Matrix shifted copi es of
each ot her.

MX) is not irreducible (X + 1 is a factor),
but the Mxing Polynomal is relatively
prime toit. Just as in integer arithnetic,
t he non-zero nunbers relatively prine to 2
and 13 have inverses (nod 26), the M xing
Pol ynom al has an inverse nod M X). Because
t he pol ynom al has an inverse, the
corresponding M xing Matrix has an inverse.
Thus, encryption can be reversed, and
decryption is possible. dever!

