
Introduction to the new AES Standard:
Rijndael

Paul Donis

This paper will explain how the Rijndael Cipher Reference
Code in C works.

Rijndael is a block cipher that encrypts and decrypts 128,
192, and 256 bit blocks, using 128, 192, and 256 byte keys
in any combination. The block is considered to be
structured as 4, 6, or 8 columns of 4 bytes, depending on
block size.

The basic operations applied to the block are:

1) KeyAddittion: XORing each byte with a round key (done
before the first round for “whitening,” and again at the
end of each round),

2) Substitution: Applying an S-box (substituting each
byte with another, based on an equation in GF(2^8)),

3) ShiftRow: Shifting the rows in a circular way, the
amount of shift (0, 1, 2, 3, or 4 bytes) depending on the
position from the top and on the block size, and

4) MixColumn: Mixing the 4, 6, or 8 columns vertically
by taking invertible linear combinations (in GF(2^8) of
the elements in each column.

In terms of the above operations, the top level structure
of Rijndael is:

KeyAddition

Substitution
ShiftRow
MixColumn
KeyAddition

Substitution
ShiftRow
MixColumn
KeyAddition

.

.

.

Substitution
ShiftRow
MixColumn
KeyAddition

Substitution
ShiftRow
KeyAddition

The number of rounds depends on the block and key sizes.
For Block and Key sizes both of 128 bits, there are 10
rounds, nine regular rounds, and one short round at the
end without MixColumn.

If either the Block or Key size is 192, but not 256, bits,
there are 12 rounds. If either the Block or Key is 256
bits, there are 14 rounds.

The reason there is no MixColumn in the last round is to
make the structure, when starting at the bottom and
working up, similar the structure going down. This makes
it possible the use the same code or circuitry, with
relatively minor changes, for both encryption and
decryption.

To understand the operations used above, we need some
mathematical background, which assumes only that the
reader knows the basic concept of integers (mod n).

The F in GF(2^8) stands for Field. Examples of fields are
complex numbers and integers mod p (p prime). A field has
a set of objects which can be combined by either of two
operations (addition and multiplication) to produce other
objects in the set. There is an additive identity (when
added to a number changes nothing, i.e. ‘zero’), there is
a multiplicative identity i.e. ‘one’. There is an
additive inverse (minus the number), and there is a
multiplicative inverse (x^-1) for all numbers except the
additive identity i.e. except for ‘zero’. There is a
distributive law: a*(c + b) = a*c + a*b. We know that the
numbers mod 26 = 2 * 13 do not have a multiplicative
inverse for two (two times anything is even and will never
give a remainder of one when divided the even 26). So the
requirement that p be prime is essential.

The G stands of Evariste Galois, who, before dying in a
duel at age 20, proved that all fields, which are finite,
have a limited set of possible structures. Whatever the
details of how we represent them, for a set of numbers p
(prime) and n, all GF(p^n) work the same (are isomorphic).

For us, p = 2, and n = 8. That means that the elements of
our GF are represented as polynomials of degree less than
eight in numbers (mod 2). Since numbers (mod 2) are
either 0 or 1, there is a direct correlation between the
sequence of polynomial coefficients and the bits in a
byte. Here is an example:

x^6 + x^4 + x^2 + x + 1 = ‘57’ in Hex
=01010111 in Binary

Just as with integers, we can have modulo arithmetic in
these polynomials. In integer modulo arithmetic, the
numbers 123, 13, and 20003 are all = 3 (mod 10). To

discover that all the “large” numbers were equal to 3 (mod
10), we divided by 10 (the modulus) and kept the
remainder. In integer modulo arithmetic, the modulus has
to be a prime for us to have multiplicative inverses of
all non-zero numbers.

The same is true for polynomials; we need the equivalent
of a prime for polynomials. The creators of Rijndael have
selected one for us:

m(x) = x^8 + x^4 + x^3 + x + 1 = ‘11B’ Hex
=100011011 in Binary

This polynomial m(x) cannot be factored (is irreducible),
and makes multiplicative inverses possible, because it
acts like a prime did in (mod p) integer arithmetic.

HERE IS THE BIGGIE:

We define a new arithmetic on bytes by seeing them as
coefficients of polynomials mod the above polynomial m(x).
Just as in (mod p) arithmetic with integers, where we
divide to get a remainder smaller than the modulus, if we
have a polynomial of degree more than seven, we divide by
m(x) to get a polynomial of degree less than eight. Since
m(x)is of degree eight, the remainder will be of degree
seven or less.

So how does addition work?

0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 2 = 0 (mod 2)

1 – 1 = 0 = 1 + 1 (mod 2)

It turns out that addition and subtraction are the same,
and equivalent to bit-wise XOR. Since, in polynomial

addition, coefficients of corresponding power are added,
adding two bytes is the same as byte-wise XOR.

To do products, we need to do polynomial products, using
the normal rules of polynomial algebra, and reduce the
result mod m(x). For example, 5 * 3 is:

(x^2 + 1)*(x^1 + 1) = [00000101]*[00000011]
= x^3 + x^2 + x^1 + x^0 = [00001111]

Nine times two is:

(x^3 + 1)*(x^1) = [00001001]*[00000010]
= x^4 + x^1 = [00010010]

So a product of a “small” number by two is a left shift of
one. How convenient! “Small” means that the shift does
not overflow to x^8; if it overflows, m(x) must be
subtracted.

To see what that mod m(x) is all about, let us look at the
powers of two.

These are powers of two mod 100011011 in GF(2^8).

00000001 00000010 00000100 00001000
00010000 00100000 01000000 10000000
00011011 00110110 01101100 11011000
01111011 11110110 11110111 11110101
11110001 11111001 11101001 11001001...

Notice what happens in the third row. Pretend there is a
one bit to the left, and compare with m(x). The start of
the fourth row is the last element of the third row
shifted left and added (XORed) to m(x).

In practice, if space permits the use of tables, we can
use tables of logs to do products. That is done in this

implementation of Rijndael. Because m(x) acts like a
prime, we have an element (generator) for which the powers
from 0 to 255 run through all possible values of byes.
Thus, logs are possible. Let us look at the tables of
logs and anti-logs (exponentials) used and see if we can
figure out the chosen base.

word8 Logtable[256] = {
 0, 0, 25, 1, 50, 2, 26, 198,
 75, 199, 27, 104, 51, 238, 223, 3,
100, 4, 224, 14, 52, 141, 129, 239,
 76, 113, 8, 200, 248, 105, 28, 193,
125, 194, 29, 181, 249, 185, 39, 106,

word8 Alogtable[256] = {
 1, 3, 5, 15, 17, 51, 85, 255,
 26, 46, 114, 150, 161, 248, 19, 53,
 95, 225, 56, 72, 216, 115, 149, 164,
247, 2, 6, 10, 30, 34, 102, 170,
229, 52, 92, 228, 55, 89, 235, 38,

The first row of the log table is the logs of:
0, 1, 2, 3, 4, 5, 6, etc. Zero is arbitrarily given a log
of zero, and we check for zero before using the log
tables. Log 1 = 0, OK. We see a log of 1 at the 3
position. So the base to power one is three, i.e. the
base is three. We see that base squared is 5. It looks
funny, but in polynomial arithmetic, it is:

 [00000011] for the one bit in three
[00000011] for the two bit in three (remember the shift)
[000000101] mod M changes nothing for power less than 8
 [00000101] this is five, and the table is correct.

In the anti-log table, the third position (start with 0)
is 15, and we see a three in the 15th (start with 0)
position in the log table.

This is the start of the Substitution Block for
encryption.

word8 S[256] = {
 99, 124, 119, 123, 242, 107, 111, 197,
 48, 1, 103, 43, 254, 215, 171, 118,
202, 130, 201, 125, 250, 89, 71, 240,
173, 212, 162, 175, 156, 164, 114, 192,
183, 253, 147, 38, 54, 63, 247, 204,

Let’s look at the code. This is reference code for
ease of understanding and for checking the validity
of implementation of optimized code. The optimized
code combines some steps.

Notice that in the first block the numbers add to 0
(mod 4) in each row, to 0 (mod 6) in the next
block, and to 0 (mod 8) in the last block. These
numbers are the shift row (encryption) and reverse
shift row (decryption) tables. The first column is
used for encryption, and the second for decryption.

My comments are in capital letters.

THESE TABLES DETERMINE THE AMOUNT OF SHIFT IN EACH ROW.

static word8 shifts[3][4][2] = {
 0, 0,
 1, 3,
 2, 2,
 3, 1,

 0, 0,
 1, 5,
 2, 4,
 3, 3,

 0, 0,
 1, 7,
 3, 5,
 4, 4
};

THIS IS USED TO DO PRODUCTS WITH LOG AND ANTILOG TABLES.

word8 mul(word8 a, word8 b) {
 /* multiply two elements of GF(2^m)
 * needed for MixColumn and InvMixColumn
 */

if (a && b) return Alogtable[(Logtable[a] +
Logtable[b])%255];

else return 0;
}

THIS DOES KEY ADDITION. FOR 128 BITS, THIS COULD BE DONE
AS FOUR 32 BIT XOR’S. “BC” IS THE NUMBER OF COLUMNS IN A
BLOCK, EITHER 4, 6, OR 8. “MAXBC” IS SET TO 8; IF YOU
WANTED TO ALLOW BLOCK SIZES OF 512, YOU WOULD SET IT TO 16.

void KeyAddition(word8 a[4][MAXBC], word8 rk[4][MAXBC],
word8 BC) {

/* Exor corresponding text input and round key input
bytes

 */
int i, j;

for(i = 0; i < 4; i++)
 for(j = 0; j < BC; j++) a[i][j] ^= rk[i][j];
}

THIS DOES ROW SHIFT. NOTICE THAT d PICKS THE DIRECTION IN
THE SHIFTS MATRIX.

void ShiftRow(word8 a[4][MAXBC], word8 d, word8 BC) {
/* Row 0 remains unchanged
 * The other three rows are shifted a variable amount
 */
word8 tmp[MAXBC];
int i, j;

for(i = 1; i < 4; i++) {
for(j = 0; j < BC; j++) tmp[j] = a[i][(j +

shifts[SC][i][d]) % BC];
for(j = 0; j < BC; j++) a[i][j] = tmp[j];

}

}

THIS IS A TABLE LOOKUP TO APPLY THE S-BOXES.

void Substitution(word8 a[4][MAXBC], word8 box[256], word8
BC) {

/* Replace every byte of the input by the byte at that
place

 * in the nonlinear S-box
 */
int i, j;

for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] = box[a[i][j]] ;

}

NOTE THE MULITPLICATIONS BY 2 AND 3. THEY RELATE TO THE
MIXING MATRIX BELOW. HERE THE COLUMN ELEMENTS ARE TREATED
AS COEFFICIENTS OF POLYNOMIALS OF DEGREE LESS THAN FOUR,
MOD M(X) = X^4 + 1.

void MixColumn(word8 a[4][MAXBC], word8 BC) {
 /* Mix the four bytes of every column in a linear
way

 */
word8 b[4][MAXBC];
int i, j;

for(j = 0; j < BC; j++)
for(i = 0; i < 4; i++)

b[i][j] = mul(2,a[i][j])
^ mul(3,a[(i + 1) % 4][j])
^ a[(i + 2) % 4][j]
^ a[(i + 3) % 4][j];

for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] = b[i][j];

}

This is the Mixing Matrix for the Mix
Columns step.

 2 3 1 1
 1 2 3 1
 1 1 2 3
 3 1 1 2

It is derived from this Mixing Polynomial:

‘03’x^3 + ‘01’x^2 + ‘01’x + ‘02’

This Mixing Polynomial is relatively co-
prime with a new Modulus Polynomial:

M(X) = ‘01’X^4 + ‘01’ = X^4 + 1.

Notice that the coefficients of the Mixing
Polynomial are ‘03’, ‘01’, and ‘02’. They
are eight bits in length. They obey the
rules of arithmetic set out at the start.
M(X) is used as a modulus for arithmetic of
polynomials of degree less than four in
elements of the previously defined GF.

Notice that the previously defined lower
case m(x) is of degree 8, and x is 0 or 1.

The new upper case M(X) is of degree four,
and X is an element of the previously
defined GF. This X is a byte in a column
that is to be mixed.

The polynomial M(X) = X^4 + 1 is used for
the modulus, because it gives rise to the
property that:

x * (a*x^3 + b*x^2 + c*x + d)
= b*x^3 + c*x^2 + d*x + a (mod (x^4 +1))

It is a circular left shift of the
coefficients. To see this, perform the
product and “subtract” a * (x^4 + 1) to
reduce the degree to less than four.
Remember that a = -a (add and subtract are
the same in the GF defined earlier). This
shifting property is the reason that the
rows of the Mixing Matrix shifted copies of
each other.

M(X) is not irreducible (X + 1 is a factor),
but the Mixing Polynomial is relatively
prime to it. Just as in integer arithmetic,
the non-zero numbers relatively prime to 2
and 13 have inverses (mod 26), the Mixing
Polynomial has an inverse mod M(X). Because
the polynomial has an inverse, the
corresponding Mixing Matrix has an inverse.
Thus, encryption can be reversed, and
decryption is possible. Clever!

