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Abstract. Elliptic curve cryptosystems appear to offer new
opportunities for public-key cryptography. In this note we provide a
high-level comparison of the RSA public-key cryptosystem and
proposals for public-key cryptography based on elliptic curves. 

1. Introduction and History  

The mathematical idea fundamental to public-key cryptography is
that of a hard problem and from such problems, mechanisms for
public-key key exchange might be constructed [DH76]. If an
additional technical requirement (a trapdoor) can be designed then
the hard problem might possibly be used to construct a public-key
encryption or a digital signature algorithm [DH76]. 

While the 20-year history of public-key cryptography has seen a
diverse range of proposals for candidate hard problems only two
have truly stood the test of time. These problems are known as the
discrete logarithm problem over a finite field and integer
factorization [Sim92]. 

During the mid-1980’s various researchers observed [Mil86, Kob87]
that another source for hard problems might be discovered by
looking at elliptic curves. Elliptic curves are rich mathematical
structures which have shown themselves to be remarkably useful in a
range of applications including primality testing and integer
factorization [Len87, Men93]. One potential use of elliptic curves is
in the definition of public-key cryptosystems that are close analogs
of existing schemes. In this way, variants of existing schemes can be
devised that rely for their security on a different underlying hard
problem. 

The aim of this note is to provide an overview of the different
tradeoffs involved in choosing between cryptosystems based on
elliptic curves and RSA [RSA78]. We will not, however, be
providing any mathematical details of either cryptosystem, nor will
we offer details of the calculations performed when making our
comparison between the two systems. 

2. Elliptic Curve Cryptosystems 



The proposed elliptic curve cryptosystems are analogs of existing
schemes. It is possible to define elliptic curve analogs of the RSA
cryptosystem [Dem94, KMOV92] and it is possible to define
analogs of public-key cryptosystems that are based on the discrete
logarithm problem (such as ElGamal encryption [ElG85] and the
DSA [NIST94] for instance). The case of analogs to the discrete
logarithm problem can be divided into two classes. In the first class
the finite field is said to have odd characteristic (typically a large
prime number) and in the second class the field is said to have
characteristic 2. While at first sight this might be viewed as a
somewhat technical distinction the choice of underlying field can
have implications for both the security and the performance of the
cryptosystem [Sim92]. This distinction is similar to one that is made
between cryptosystems based on the discrete logarithm problem. 

It is interesting to note that the problems of integer factorization and
of discrete logarithms over a prime field appear to be of roughly the
same difficulty. Techniques used to solve one problem can be
adapted to tackle the other. As we have mentioned, there are elliptic
curve analogs to RSA but it turns out that these are chiefly of
academic interest since they offer essentially no practical advantages
over RSA. This is primarily the case because elliptic curve variants
of RSA actually rely for their security on the same underlying
problem as RSA, namely that of integer factorization. 

The situation is different with variants of discrete logarithm
cryptosystems. The security of the elliptic curve variants of discrete
logarithm cryptosystems depends on a restatement of the
conventional discrete logarithm problem for elliptic curves. This
restatement is such that current algorithms that solve the
conventional discrete logarithm problem in what is termed
sub-exponential time are of little value in attacking the analogous
elliptic curve problem. Instead the only available algorithms for
solving these elliptic curve problems are more general techniques
that run in what is termed exponential time. 

The distinction between exponential and sub-exponential time for
solving some problem is a vitally important one. In essence it means
that methods of finding a solution to one problem are becoming
infeasible much faster than those for solving the other problem. As
we will see, this has considerable practical significance. 

In this note we will only be considering elliptic curve cryptosystems
that depend for their security on the problem of taking elliptic curve
discrete logarithms. In particular we will be considering analogs to
the DSA and to the ElGamal encryption scheme. These will be
described as the Elliptic Curve DSA (ECDSA) and the Elliptic
Curve Encryption Scheme (ECES) respectively [IEEE97]. 



At a high level, we can already make one important statement. On a
functional level, mechanisms for encryption or digital signatures can
be devised so that they depend on any of the three types of problems
we have already mentioned; integer factorization, conventional
discrete logarithms, and elliptic curve discrete logarithms. There are
however many trade-offs between the systems and these depend on
many circumstances. It is the purpose of this note to give some
guidance as to the implications of these potential differences. 

3. Setting Up an Elliptic Curve Cryptosystem 

In setting up any cryptosystem a certain amount of computation is
required. In this section we will compare some of the basic set-up
requirements for elliptic curve cryptosystems with those for users of
RSA. 

Recall that the elliptic curve cryptosystems of interest to us here are
variants of the discrete logarithm cryptosystems like ElGamal and
DSA. As a consequence certain parameters will be system
parameters that are common to a set of users. Establishing the system
parameters involves selecting an underlying finite field for the
cryptosystem and a representation for the elements in the finite field.
Then an "appropriate" elliptic curve has to chosen together with a
point on the curve called the generator. 

As in the conventional discrete logarithm case some finite fields,
namely those of characteristic 2, appear to offer implementation and
performance advantages in hardware. Unlike the discrete logarithm
case1, however, the choice of such a field does not appear to make
the underlying problem any easier, at least as far as existing
techniques are concerned, and so fields of this type will typically be
the ones of choice. 

1 When using a field of characteristic two for the discrete logarithm based
cryptosystems there are opportunities for substantial performance
improvements. However the discrete logarithm problem over such fields is
somewhat easier to solve. Thus the potential benefits of using a field of
characteristic 2 are consumed by the need for longer keys to attain the same
level of security.

 

There are several approaches for selecting an appropriate elliptic
curve. They all tend to be mathematically very complicated and they
have some limitations. It is perhaps worth pointing out at this stage
that implementing elliptic curve cryptosystems can in fact be quite
challenging without a good understanding of the mathematics of
elliptic curves. 



So we see that setting up the system parameters for an elliptic curve
cryptosystem is quite involved. However, once it is done, the
resulting elliptic curve parameters may be used for multiple users
within a group (just as in the case of discrete logarithm
cryptosystems) and each user has his or her public/private key pair.
These key pairs are easy to generate and consist of a random, secret
integer k that acts as the private key and that multiple of the
generator point G on the curve that acts as the public key kG for the
user. The security assumption is that it is hard to compute the private
key k from the public key kG. 

By way of comparison, the RSA cryptosystem requires no system
parameters. The first stage of computing a public/private key pair
consists of the user generating two primes of the appropriate size and
computing the public modulus n as their product. This part of the
computation can be rather computationally intensive (though not as
intensive as setting up elliptic curve system parameters). The second
stage for the user is then to compute the secret exponent d, or certain
information that allows decryption to be optimized (so-called
Chinese Remainder Theorem information), from what is usually a
fixed public exponent e. The calculation of the secret exponent (or
related information) is insignificant when compared to the time
required to generate the primes. The various requirements for the
different cryptosystems are given in Table 1 below. 

 ECDSA and ECES RSA

system
parameters

the field F, two field
elements that
represent the curve,
the generator G on
the curve and the
order of G 

none

public key point P= kG on the
elliptic curve 

modulus n and exponent
e 

private key an integer k where 0
< k< q 

exponent d or
corresponding CRT
information 

Table 1: System requirements for elliptic curve cryptosystems and
RSA. 

 

4. Practical Issues: Security 

When we discuss the difficulty of solving hard problems, we



normally do so in terms of the size of the problem facing the
cryptanalyst. For RSA, the size of the problem is the length of the
modulus that must be factored. For elliptic curve cryptosystems the
size of the problem is the number of points N in the group we are
working with. For the purposes of this note however, we will use an
observation [Men95] that effectively equates this number of points
directly with the size of the underlying field. 

The elliptic curve discrete logarithm problem seems to be
particularly hard to solve. Several algorithms might be used that
have a running time that depends on the square root of N where N is
the number of points in the group in which operations are performed.

It is interesting to note that such algorithms were among those used
for factoring or solving the discrete logarithm problem when RSA
was first proposed.  The introduction of cryptosystems based on
factoring and the discrete logarithm problem prompted developments
in finding solutions to both problems. These improvements were the
development of the quadratic sieve, described in [Sil87], and a
further improvement with the number field sieve [BLP94]. The
running time of these algorithms grows subexponentially in the size
of the problem and for the size of RSA moduli that are typical today
they are far superior for solving the problem than is the exponential
Pollard Rho method [FR95]. 

In general the subexponential algorithms used to tackle the discrete
logarithm problem cannot be adapted to the elliptic curve
environment [Mil86]. There are, however, some exceptional cases
where the elliptic curve discrete logarithm problem can be reduced to
the conventional discrete logarithm problem (and hence becomes
vulnerable to subexponential techniques) but these cases are readily
classified and easily avoided [MOV91]. 

It appears that an elliptic curve cryptosystem implemented over the
160-bit field GF(2160) currently offers roughly the same resistance to
attack as would a 1024-bit RSA modulus2 [Men95]. This currently
offers the opportunity to use shorter keys than with RSA which
might lead to better storage requirements and improved performance.
We will address these issues in Section 6. 

2 A similar calculation suggests that an elliptic curve cryptosystem over a
136-bit field GF(2136) gives us roughly the same security as 768-bit RSA.

 

5. The state of academic interest and potential future
development 



1977 RSA proposed  

1985
Quadratic sieve factoring
algorithm becomes
increasingly practical

First use of elliptic curves
proposed

1991  

Reduction of the elliptic curve
discrete logarithm problem to a
sub-exponential algorithm for
some curves 

1993
Number field sieve, an
improved sub-exponential
factoring algorithm 

 

1994  

Sub-exponential algorithm on
high-genus hyperelliptic curves
[ADH94] (no immediate
implications to elliptic curves
but an unexpected
development) 

Table 2: Events in the evolution of RSA and elliptic curve
cryptosystems. 

 

In Table 2 we compare the evolution of factoring techniques with the
development of elliptic curve cryptosystems. 

Developments in the factoring problem have historically occurred
more quickly than has progress in finding solutions to the elliptic
curve discrete logarithm problem. There are however some
important issues to consider. 

From its publication RSA has been the public-key algorithm that has
received most attention from implementors and analysts alike. For a
great many years there were no competing proposals and so research
has almost inevitably been focused on the problem of factoring. In
addition, progress in factoring has been encouraged by such efforts
as the compilation of the Cunningham Tables [BLS88] and the RSA
Factoring Challenge sponsored by RSA Data Security, Inc. [FR95].
Another important issue that should not be overlooked is the
apparent simplicity of the RSA algorithm. It is easy for most
mathematicians to understand RSA and to understand the basic
principles behind the major factoring techniques and so many
researchers have contributed to an assessment of the security offered.
The simplicity of RSA should be compared with what might appear
to be the less approachable mathematics used in elliptic curve
cryptosystems. This may well go some way to deterring some



researchers from devoting their valuable time to what appears at first
sight to be a very involved field. 

The possibility that there will be advances in solving the elliptic
curve discrete logarithm problem is a matter of speculation.
Certainly the problem is currently harder than factorization for the
same size problem but it is perhaps only now that the problem is
coming under serious and wide-spread scrutiny. It will be
particularly interesting to discover whether the choice of underlying
field for the elliptic curve cryptosystem has any implications for
security (as has become the case with the conventional discrete
logarithm problem). Today, elliptic curve cryptosystems over a field
of characteristic 2 are considered to offer implementational
advantages but only time will tell whether the situation of the
classical discrete logarithm problem is repeated in the case of elliptic
curves, with some fields requiring larger system parameters for the
same level of security. 

6. Practical Issues: Implementation and Performance 

Interest in elliptic curve cryptosystems is fueled by the appeal of
basing a cryptosystem on a different hard problem and the fact that
currently such a choice appears to lead to smaller system parameters
and key sizes for the same level of security. 

Throughout this section we will be comparing the requirements and
performance of 1024-bit RSA (with public exponent 216+1) with an
elliptic curve cryptosystem implemented over the field GF(q) where
q is 160 bits in length and the field is either of characteristic 2 or of
odd characteristic. For the purposes of this note, we will assume that
these different fields have essentially the same implementation
requirements. In Table 3 we give a rough comparison of the storage
requirements in bits for the schemes of interest to us in this note. 

 
ECDSA and ECES
over GF(q) 

RSA 1024-bit n and
e=216+1 

system
parameters

(4 x 160)+1 = 641 0

public key 160+1 = 161 1024 + 17 = 1041

private key 160 (801 with system
parameters) 

2048 (or 2560 with CRT
information) 

Table 3: The storage requirements in bits when making a naive
comparison between an elliptic curve cryptosystem over GF(q)where
q is 160 bits in length and RSA with a 1024-bit modulus. 



 

With regard to the speed of implementation of these cryptosystems
the situation is still very unclear. The basic elliptic curve operations
are in fact quite complicated3 (more complicated in fact than the
operations required for RSA) and so if elliptic curve cryptosystems
ever require the same size of parameters as does an implementation
of RSA then the elliptic curve cryptosystem can be expected to be
slower. In fact it is possible to envisage situations where even if the
elliptic curve implementation uses smaller parameters than some
implementation of RSA, the latter might remain the more efficient in
terms of practical use. At present however, the current parameter
advantages for elliptic curve cryptosystems are such that the speed of
implementation can compare favorably with the performance of
RSA. 

Putting quantitative data into this part of the note is very difficult.
We know of no figures or benchmarks with which we can compare
an optimized version of RSA on one platform with an optimized
version of some elliptic curve cryptosystem. However we make an
attempt to qualitatively compare the performance of the various
systems to the speed of RSA for the relevant operation and these
results are presented in Table 4. These figures should be taken as a
guide only and in making these comparisons we have assumed that
one elliptic curve addition takes roughly the same effort as 10
modular multiplications. We feel that, for the purposes of this note,
this figure will give a rough but fair comparison between
cryptosystems. All techniques for precomputation that apply to
discrete logarithm cryptosystems will apply equally to systems based
on elliptic curves. It is interesting to note that even with the smaller
keys required for elliptic curve cryptosystems, signature verification
with RSA remains advantageous. 

 
ECDSA or
ECES over
GF(q) 

RSA with
1024-bit n,
e=216+1, and
CRT 

Discrete
logarithm systems
with 1024-bit
prime 

encryption 120 17 480 

decryption 60 384 240 

signing 60 384 240 

verification 120 17 480 

Table 4: The comparative performance of elliptic curve
cryptosystems over GF(q) where q is 160 bits in length when
compared with 1024-bit RSA and discrete logarithm cryptosystems
for various cryptographic functions. Figures in the table are the



number of time units required to complete the given operation if we
assume that one 1024-bit modular multiplication requires one unit of
time. Not included in this table is that Diffie-Hellman key agreement
requires 480 time units for each party. These figures do not take
account of any of the various optimizations possible and they should
be viewed as offering a rough comparison only. 

 

3 An elliptic curve operation involves a sequence of elliptic curve additions,
and each addition consists of several arithmetic operations in the finite field.
An RSA exponentiation involves a sequence of modular multiplications.

 

7. Practical Issues: Standards and Interoperability 

Recently, elliptic curve cryptosystems have been considered as part
of the efforts of various standards bodies including ANSI X9,
ISO/IEC SC27 and the IEEE (P1363 Standard for Public-Key
Cryptography). Elliptic curve cryptosystems are also included in
OAKLEY, part of an Internet IETF draft for a key agreement
protocol. 

RSA is featured in many published and proposed standards
worldwide, including all those previously mentioned with regards to
elliptic curve cryptosystems and others besides such as ISO/IEC
9796, ANSI X9.31, Australian Standard 2805.5.3 to name but a few
as well as the widely used, industry-sponsored, Public Key
Cryptography Standards (PKCS). RSA is also used in many Internet
initiatives and proposed protocols such as PEM, S/MIME, S/WAN,
S-HTTP, and SSL. (See [Kal93] for a survey of encryption
standards.) As far as commercial implementations are concerned
RSA is used in a wide variety of software and hardware products and
RSA licensees include Microsoft, AT&T, IBM, Motorola and many
others too numerous to mention. See http://www.rsa.com/ for more
details. 

8. Conclusion 

The opportunity to conveniently use elliptic curve cryptosystems
within commercial applications is only now becoming a reality.
There are however many issues to consider when making the choice
between an application based on an elliptic curve cryptosystem and
one based on RSA. In this note we have presented some of the issues
(security, performance, standards and interoperability) that are
perhaps most pertinent when making such a choice. The comparisons
in this note are made, however, under the premise that an elliptic



curve cryptosystem over GF(2160) offers the same security as
1024-bit RSA. Whether such an assumption will be realistic even
some short distance into the future remains in interesting, but open,
question. 
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