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Part I

Security of RC5

1 Introduction

The RC5 encryption algorithm was designed by Professor Ronald Rivest
of MIT and �rst published in December 1994 [17]. Since its publication,
RC5 has attracted the attention of many researchers in the cryptographic
community in e�orts to accurately assess the security o�ered. In this report,
we will focus our discussions on the security of RC5 against di�erential and
linear cryptanalysis, but we will also give a brief summary of other known
cryptanalytic results on RC5.

The analysis of a cryptographic algorithm is of course essential to its
acceptance and use. We observe that the lengthy analysis of the Data En-
cryption Standard [16] prior to publication, though not public, resulted in
an algorithm that has resisted attack for many years. Our hope is that this
report will provide a foundation for similarly robust analysis of RC5 by the
cryptographic community. In this way any weaknesses can be found early,
and so that if RC5 or its enhancements (e.g., RC6 [18]) survive the process
it will be suitable as one of the potential successors to DES. We welcome
critical comments on this report, and additional approaches to analyzing
RC5.

RSA Laboratories' analysis of RC5 is still in progress, and this report
will be periodically updated to re
ect any additional �ndings.

2 Description and Features of RC5

RC5 is a parameterized algorithm, and a particular RC5 algorithm is desig-
nated as RC5-w=r=b. We summarize these parameters below:

w The word size, in bits. The standard value is 32 bits; allowable
values are 16, 32, and 64. RC5 encrypts two-word blocks so that
the plaintext and ciphertext blocks are each 2w bits long.

r The number of rounds. Allowable values are 0, 1, ..., 255.

b The number of bytes in the secret key K. Allowable values of b are
0, 1, ..., 255.

RC5 consists of three components: a key expansion algorithm, an en-

cryption algorithm, and a decryption algorithm. These algorithms use the
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following three primitive operations (and their inverses).

1. Addition of words modulo 2w, denoted by \+".

2. Bit-wise exclusive-OR of words, denoted by �.

3. Rotation: the rotation of x to the left by y bits is denoted by x <<< y.
Note that only the log2(w) low-order bits of y a�ect this rotation.

2.1 Key expansion

The key-expansion algorithm expands the user's key K to �ll the expanded
key table S, so that S resembles an array of t = 2(r + 1) random binary
words determined by K. It uses two \magic constants" and consists of three
simple algorithmic parts.

The two word-size magic constants Pw and Qw are de�ned for arbitrary
w as follows:

Pw = Odd((e� 2)2w)

Qw = Odd((�� 1)2w)

where

e = 2:718281828459::: (base of natural logarithms)

� = 1:618033988749::: (golden ratio) ;

and where Odd(x) is the odd integer nearest to x (rounded up if x is an
even integer, although this won't happen here).

The �rst algorithmic step of key expansion is to copy the secret key
K[0; :::; b� 1] into an array L[0; :::; c� 1] of c = db=ue words, where u = w=8
is the number of bytes/word. This operation is done in a natural manner,
using u consecutive key bytes of K to �ll up each successive word in L, low-
order byte to high-order byte. Any un�lled byte positions of L are zeroed.
In the case that b = c = 0, we reset c to 1 and L[0] to zero.

The second algorithmic step of key expansion is to initialize array S to
a particular �xed (key-independent) pseudo-random bit pattern, using an
arithmetic progression modulo 2w determined by the \magic constants" Pw
and Qw. Since Qw is odd, the arithmetic progression has period 2w.

S[0] = Pw;
for i = 1 to t� 1 do

S[i] = S[i� 1] +Qw;
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The third algorithmic step of key expansion is to mix in the user's secret
key in three passes over the arrays S and L. More precisely, due to the
potentially di�erent sizes of S and L, the larger array will be processed
three times, and the other array may be handled more times.

i = j = 0;
A = B = 0;
do 3 �max(t; c) times:

A = S[i] = (S[i] +A+B) <<< 3;
B = L[j] = (L[j] +A+B) <<< (A+B);
i = (i+ 1) mod(t);
j = (j + 1) mod(c);

Note that the key-expansion function has a certain amount of \one-
wayness": it is not so easy to determine K from S.

2.2 Encryption and decryption

The description of the encryption algorithm is given in the pseudo-code
below. We assume that the input block is given in two w-bit registers A and
B, and that the output is also placed in the registers A and B.

A = A+ S[0]
B = B + S[1]
for i = 1 to r do

A = ((A�B) <<< B) + S[2i]
B = ((B �A) <<< A) + S[2i+ 1]

The decryption routine is easily derived from the encryption routine.

2.3 Features of RC5

RC5 is a fast block cipher designed to be suitable for both software and
hardware implementation. It is a parameterized algorithm, with a variable
block size, a variable number of rounds, and a variable-length secret key.
This provides the opportunity for great 
exibility in both the performance
characteristics and the level of security.

One signi�cant feature of the design of RC5 is its simplicity; encryption is
based on only three operations: addition, exclusive-or, and rotation. Thus, it
makes RC5 both easy to implement, and very importantly, more amenable to
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analysis than many other block ciphers. The connection between simplicity
of design and simplicity of analysis, was indeed one of Rivest's goals.

Another distinguished feature of RC5 is the heavy use of data-dependent
rotations in encryption. As we will see in this report, this feature is very
useful in preventing di�erential and linear cryptanalysis.

3 Techniques for Analyzing Block Ciphers

Several techniques have been developed for analyzing the security of block
ciphers. In this section, we give a brief review of the techniques that will
be used in this report, including exhaustive search, statistical tests, di�er-
ential cryptanalysis, and linear cryptanalysis. The reader can �nd detailed
discussions about these di�erent techniques in [19].

The most basic attack that can always be mounted on a block cipher is
that of exhaustive search. (If this is also the best attack available, then the
designer of the cipher has done a good job!) In such an attack, an adversary
obtains a plaintext and its corresponding ciphertext under the secret key
and simply tests each of the possible candidates for the key until a match
is found. If the key has n bits, then there are 2n possible keys to test,
and hence the amount of work for exhaustive search is closely related to
the key size. When key size is larger then the block size, multiple pairs of
plaintext/ciphertext may be needed in an exhaustive search attack.

Statistical tests can be used for analyzing the statistical behavior of block
ciphers. A strong block cipher should behave like a random permutation of
the plaintext for a random key so that it is impossible to get information
about the key or plaintexts from ciphertexts except by exhaustive search.
Commonly used statistical tests include randomness tests on ciphertext,
correlation tests between plaintext, key, and ciphertext, etc. We want to
remark that good statistical behaviors are only a necessary condition for the
security of block ciphers, and that block ciphers that pass such statistical
tests may well still remain catastrophically weak.

Di�erential cryptanalysis [2], pioneered by Biham and Shamir, has had
a quite revolutionary e�ect on the design and analysis of block ciphers.
The basic idea in this technique is the following: Two plaintexts are chosen
with a certain \di�erence" P 0 between them. Typically, the \di�erence" is
measured by exclusive-or �, but for some ciphers an alternative measure can
be more useful. These two plaintexts are enciphered to give two ciphertexts
such that their di�erence C 0 has a speci�c value with better than average
probability. Such a pair (P 0; C 0) is called a characteristic. Depending on the
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cipher and the analysis, the behavior of these characteristics can be useful
in deriving certain bits of the key.

Linear cryptanalysis [14], introduced by Matsui, is another theoretical
breakthrough in block cipher cryptanalysis. The basic idea of this technique
is to �nd relations among certain bits of plaintext, ciphertext, and key that
hold with a probability p 6= 1=2 (i.e., bias = jp�1=2j > 0). Such a relation is
called a linear approximation. Just as in di�erential cryptanalysis, we seek
to exploit such non ideal behavior and it may be possible to identify linear
approximations that can be used to obtain information about the key.

4 Summary of Known Cryptanalytic Attacks on

RC5

The �rst cryptanalytic results on RC5 were given by Kaliski and Yin [7] at
Crypto'95. By analyzing the basic structure of the encryption routine as well
as the properties of data-dependent rotations, they were able to construct
di�erential characteristics and linear approximations of RC5 that are useful
for mounting di�erential and linear attacks. Their results also show that
the use of data-dependent rotations and the incompatability between the
di�erent arithmetic operations used in encryption help prevent both attacks.

Subsequent results on RC5 are mostly in the area of di�erential crypt-
analysis. At Crypto'96, Knudsen and Meier [9] presented improvements
over Kaliski and Yin's di�erential attack by carefully analyzing the relations
among input, output, and subkeys in the �rst two rounds. Even though the
characteristics used in their attack are essentially the same as in [7], they
were able to improve the plaintext requirement by exploiting the charac-
teristics in a more sophisticated way at the beginning and the end of the
r rounds. They also showed the existence of a small fraction of \di�eren-
tially weak keys" for RC5 with respect to which their attack can be further
enhanced.

Kaliski and Yin [8] further studied how the data-dependent rotation in
a single round can spread a small di�erence in input to a big di�erence
in output. Such a property of data-dependent rotations makes standard
di�erential cryptanalysis infeasible for RC5 with enough rounds.

At Eurocrypt'98, Biryukov and Kushilevitz [3] presented nice improve-
ments over Knudsen and Meier's di�erential attacks on RC5. They studied
more complex di�erentials than in previous works and de�ne a more gen-
eral notion of \good pairs" with respect to data-dependent rotations. In
particular, all plaintext/ciphertext pairs that escape di�erences in rotation
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amounts can be used, not just pairs that follow speci�c patterns. Biryukov
and Kushilevitz also proposed more e�cient methods for �nding good pairs.
They estimated that RC5 with 12 rounds and 64-bit block size can be at-
tacked using about 244 plaintexts.

Unlike the situation with di�erential cryptanalysis in which we have seen
big improvements over the �rst attack, RC5 has appeared to be extremely
resistant to linear cryptanalysis. Moriai, Aoki, and Ohta [15] investigated
the strength of RC5 against linear cryptanalysis by focusing on the bias of
linear approximations for �xed keys, rather than the average bias (see x9.1)
over all keys. They also considered a mini-version of RC5 with much re-
duced word size and computed the percentage of keys that yield ciphers less
resistant to linear cryptanalysis than the average case analysis might sug-
gest. Selcuk [21] implemented the �rst linear attack [7] and showed that the
success rate of the attack is much less than the early theoretical estimates
due to some hidden assumptions.

As of this writing, the di�erential attack on RC5 described in [3] remains
as the best published result. A summary of the data requirements1 for this
attack with a varying number of rounds is provided in Table 1 for RC5 with
a 64-bit block size. The second row in the table has been derived from the
�rst row using the simple fact [2] that a di�erential attack with m chosen
plaintexts can be converted into one with approximately 2w(2m)1=2 known
plaintexts where the block size is 2w.

Number of rounds 4 6 8 10 12 14 16 18

Di�erential attack

(chosen plaintext) 27 216 228 236 244 252 261 >

Di�erential attack

(known plaintext) 236 241 247 251 255 259 263 >

Table 1: Plaintext requirements for the currently best-known at-
tack on RC5 (64-bit block size).

Kocher [10] developed what are called timing attacks that are generally
applicable to many cryptosystems. In such an attack, an opponent tries to

1While most of the data requirements are impractical anyway, we use \>" to denote
when the attack is infeasible even at a theoretical level. This is when the plaintext require-
ments are greater than 22w , which is the maximum number of possible 2w-bit plaintexts.
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obtain information about the secret or private key by recording and analyz-
ing the time used for cryptographic operations that involve the key. Kocher
observed that RC5 may be subject to timing attacks if RC5 is implemented
on platforms for which the time for computing a single rotation is propor-
tional to the rotation amount. However, RC5 can easily be implemented in
such a way as to be invulnerable to timing attacks. Many modern processors
have constant-time rotation, addition, and exclusive-or instructions. Other
processors may have a rotation or shift time that depends linearly with the
amount of rotation, but in this case it is usually easy to arrange the work so
that the total compute time is data-independent, for example, by computing
a rotate of t bits using a left-shift of t bits and a right-shift of w � t bits.
In either case, the RC5 encrypt/decrypt time is data-independent, causing
any potential timing attacks to fail.

With regards to the less sophisticated brute-force attack of trying each
key in turn, the security of RC5 is obviously dependent on the length of the
encryption key that is used (as is the case with all ciphers). RC5 has the
attractive feature that the length of the key can be varied (unlike with DES
for instance) and so the level of security against these attacks can be tuned
to suit the application. With the launch of the RSA Data Security Secret-

Key Challenge [20], it is hoped that the resistance of ciphers to exhaustive
key search attacks can be more accurately gauged in the future. To help in
this assessment, various texts encrypted with RC5 with di�erent length keys
have been posted as a challenge to the community. Some of these challenges,
such as RC5 with a 40-bit, 48-bit and 56-bit key were solved within a number
of months of the announcement of the Challenge [20], as was expected. It
is anticipated that some of the longer key lengths will remain an unsolved
challenge for some considerable time to come.

5 The Current Status of RC5

The results to date on the cryptanalysis of RC5 have been very encouraging.
We observe that RC5 with 12 rounds and 64-bit block size give roughly the
same security as DES against analytical attacks { 244 chosen plaintext pairs
for RC5 as opposed to 243 known plaintexts for DES. The extra speed of
RC5 allows one to use extra rounds, thereby providing an additional margin
of safety. Based on the known results, we conclude that RC5 with 16 rounds
and 64-bit block size can provide good security against existing analytical
attacks.

With the cipher receiving considerable attention from cryptanalysts world-
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wide, a picture of the security o�ered by RC5 has been quick to develop.
Acceptance of the cipher is growing, and RC5 has been discussed for in-
clusion in various standards e�orts and has been published by the IETF in
RFC2040 [1]. Three years on, it seems that the RC5 block cipher o�ers a
computationally inexpensive way of providing secure encryption.

Part II

Detailed Analysis of RC5

6 Notation

In Rivest's description of RC5 [17], a round consists of two equations, and in
each equation, either A or B is modi�ed while the other remains unchanged.
We will refer to each equation as a half-round. So one half-round of RC5 is
similar to a full round in DES [16]. For ease of discussions, we adopt the
common notation for Feistel ciphers2 and rewrite RC5 as follows.

L1 = L0 + S0
R1 = R0 + S1
for i = 2 to n do

Li = Ri�1

Ri = ((Li�1 �Ri�1) <<< Ri�1) + Si

We will use the above description of RC5 throughout the report. We
will refer to the two equations which involve (Li�1; Ri�1) and (Li; Ri) as
the ith half-round of RC5. Hence, the two initial equations (L1 = L0 + S0
and R1 = R0+S1) together are considered as the �rst half-round, and RC5
contains n = 2r + 1 half-rounds in total. The input block (plaintext) is
(L0; R0) and the output block (ciphertext) is (Ln; Rn). For ease of notation,
we will change S[i] to Si.

Some additional notation is as follows. For a binary vector x of length w,
we label the bit positions from the most signi�cant bit to the least signi�cant
bit as w � 1; : : : ; 1; 0. We use x[s] to denote the sth bit of x and x[s::t]
(s � t) to denote the sth through tth bits of x. Finally, we use lg(w) to
denote log2(w). Note that x mod w = x[lg(w) � 1::0] are the bits of x that
are used to determine a rotation by x.

2Strictly speaking, RC5 is not a Feistel cipher, since the round function of a Feistel
cipher has the general form of Ri = Li�1 � f(Ri�1; Si).
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7 A General Idea for Attacking RC5

In this section, we describe a general idea for attacking RC5 by analyzing
the structure of the RC5 encryption routine. The idea is used in both our
di�erential and our linear cryptanalysis. Note that to attack RC5, one can
try to �nd either the original secret key or the expanded key table S. If the
latter approach is used, then the attack is independent of the length of the
secret key. In this report, we will focus on the latter approach.

The general idea is to reduce the problem of computing the entire ex-
panded key table S to the problem of computing Ln�1[b] for some 0 � b �
w � 1. (Note that Ln�1[b] is a bit in the next-to-last half-round and is not
visible from the ciphertext.) At a high level, the reduction is accomplished
in the following two steps.

1. Reduce the problem of computing S to the problem of computing
the last subkey Sn. This is based on the iterative structure of the
encryption routine.

2. Reduce the problem of computing Sn to the problem of computing
Ln�1[b]. This is based on the structure of the last half-round.

In what follows, we focus on the last half-round and explain in more
detail how the reduction works in step 2. Consider the two equations in the
last half-round:

Ln = Rn�1;

Rn = ((Ln�1 �Rn�1) <<< Rn�1) + Sn:

There are four variables in the second equation, and two of them, Rn and
Rn�1(= Ln), are known from the ciphertext. Therefore, if we can obtain
information about Ln�1, it will immediately give us information about the
subkey Sn. To make such a relation concrete, we establish an equation
that relates certain bits of the four variables for each �xed rotation amount
Rn�1 mod w.

We �rst consider a special case where (b + Rn�1) mod w = 0. In this
case, the bit Ln�1[b] � Rn�1[b] moves to bit position 0 after the rotation.
We thus have

Rn[0] = (Ln�1[b]�Rn�1[b])� Sn[0]: (1)

Since Rn[0] and Rn�1[b] are known, if we can compute Ln�1[b], then we can
obtain Sn[0], the least signi�cant bit of subkey Sn.
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The general case where (b + Rn�1) mod w = s is a little more involved
since there is a carry e�ect due to the addition of Sn when s 6= 0. Let

Y = (Ln�1 �Rn�1) <<< Rn�1;

and so
Rn = Y + Sn:

Let
carry(s) = carry out from Y [s� 1::0] + Sn[s� 1::0].

Then we have that

Rn[s] = Y [s]� Sn[s]� carry(s)

= (Ln�1[b]�Rn�1[b])� Sn[s]� carry(s): (2)

If Sn[s � 1::0] is known, then given a ciphertext (Ln; Rn), we can compute
the carry out carry(s) by comparing Sn[s� 1::0] with Rn[s� 1::0]. Once we
obtain both carry(s) and Ln�1[b], we can compute Sn[s].

We are now in a position to give the full details of the reduction in
step 2. Let B denote an algorithm which computes Ln�1[b] given a plain-
text/ciphertext pair. Figure 1 contains pseudocode for computing Sn using
algorithm B.

for s = 0 to w � 1
select a plaintext/ciphertext pair (L0; R0)=(Ln; Rn)
such that (b+Rn�1) mod w = s

compute Ln�1[b] using algorithm B
if s = 0, then carry(0) = 0
if s � 1
if Sn[s� 1::0] � Rn[s� 1::0]
then carry(s) = 0
else carry(s) = 1

Sn[s] = Ln�1[b]�Rn�1[b]� carry(s)

Figure 1: Pseudocode for computing the last subkey Sn.

Assuming that RC5 is a pseudorandom function, the rotation amount
s = Rn�1 mod w = Ln mod w is random for a randomly chosen plaintext.
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Thus, when enough random plaintexts are gathered, all possible values of s
will occur, and hence all bits of Sn can be recovered.

From the above discussions, we see that an algorithm that can compute
Ln�1[b] is very useful for recovering Sn. By the reduction in step 1, the
same algorithm can also be used to recover other subkeys. More speci�cally,
when we try to recover subkey Si (i < n), we can \unwrap" n�i half-rounds
using subkeys Si+1; : : : ; Sn (which are already known) to obtain the outputs
from the ith half-round (the corresponding \ciphertexts" of Si). Then we
can compute Li�1[b] and Si in a similar fashion (See Figure 1).

We remark that there may be other algorithms for computing the bits
of Ln�1. If so, such algorithms could be extended to an attack against RC5
using the basic idea that we have described in this section. Furthermore,
there may be other attacks than di�erential and linear cryptanalysis to which
the techniques described in this section may apply. At this time, however,
no alternative e�ective techniques are known to exit.

8 RC5 and Di�erential Cryptanalysis

In this section, we will study the security of RC5 against di�erential crypt-
analysis. We will present the details of the �rst di�erential attack [7] on
RC5. The techniques used in this attack is quite illustrative: they show how
to form characteristics for RC5 and how to use certain special characteristics
at the end of the r rounds to e�ectively compute the subkeys. We will also
summarize the key ideas in the two subsequent improved di�erential attacks
on RC5 [9, 3].

Later in the section, we will discuss the role of data-dependent rotations
in helping prevent di�erential attacks. Finally, we analyze what are called
Markov properties of RC5. Such properties are interesting since they po-
tentially allow one to make additional claims on the resistance of a cipher
to di�erential style attacks.

8.1 The �rst di�erential attack on RC5

8.1.1 Characteristics for a half-round of RC5

Roughly speaking, a characteristic for a half-round consists of an input dif-
ference and output di�erence together with the associated probability. Fol-
lowing the notation in [2], we denote such a characteristic by 
 = (
P ;
T ),
where
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P = (L0

i�1; R
0

i�1) = (Li�1 � L�

i�1; Ri�1 �R�

i�1);


T = (L0

i; R
0

i) = (Li � L�

i ; Ri �R�

i ):

Intuitively, if a pair of inputs to a half-round have di�erent rotation
amounts, then the pair of outputs from the half-round will di�er in many
di�erent ways (see x8.3 for an analytical justi�cation). Consequently, we will
focus on characteristics for which the pair of inputs have the same rotation
amounts. Let es denote the w-bit binary vector which is 1 in bit s and
0 everywhere else. For most of the characteristics that we present below,
each half of 
P and 
T is either zero or es for s � lg(w), implying that the
rotation amounts will be the same.

We will calculate the probability associated with a half-round character-
istic by averaging over both the pair of inputs and subkey Si. This is for the
reason of simplicity. There may be keys for which the probability is higher
and others for which it is lower. However, assuming the key expansion of
RC5 is good, subkeys will be essentially independent of one another, and
hence the overall probability of a characteristic for n half-rounds will be
close to what we would expect for nearly all keys. Implementation results
also con�rm that this appears to be reasonable.

Table 2 lists �ve half-round characteristics that will used in the di�er-
ential attack. When analyzing these probabilities, we use the fact that for
random inputs x and y with x� y = es and random key Si, the probability
that (x+ Si)� (y + Si) = es is at least 1=2.


 
P 
T conditions probability


1 (0; es) (es; es) s � lg(w) p � 1
w � 12


2 (es; es) (es; 0) s � lg(w) p = 1


3 (es; 0) (0; et) s; t � lg(w) p � 1
w � 12


4 (0; es) (es; et) s; t � lg(w); t 6= s p � 1
w � 12

s; t � lg(w); t 6= s; u > v


5 (es; et) (et; eu � ev) t� s = �(u� v) mod w p � 1
w � 12 �

1
2

Table 2: Useful characteristics for a single half-round.
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For characteristics 
3, 
4, and 
5, there are many possible output dif-
ferences 
T for each input di�erence 
P . In particular, for each choice of

P , there are (w � lg(w)) choices of parameter t for 
3, (w � lg(w) � 1)
choices of parameter t for 
4, and w choices of parameters (u; v) for 
5.

For the �rst half-round, there are three characteristics that hold with
probability 1:


10 : 
P = 
T = (0; ew�1), which may be joined with 
1,


20 : 
P = 
T = (ew�1; ew�1), which may be joined with 
2, and


30 : 
P = 
T = (ew�1; 0) which may be joined with 
3.

These characteristics are particularly useful.

8.1.2 Characteristics of RC5

In this section, we show how to join the half-round characteristics described
in x8.1.1 to form characteristics for RC5 in its entirety.

We �rst note that two characteristics can be joined together if the output
di�erence 
T of the �rst one and the input di�erence 
P of the second one
are the same. For example, 
3 with parameters (s1; t1) can be joined to

1 with parameter s2 if t1 = s2. Therefore, the possible ways to join the
�ve characteristics in Table 2 are 
1-
2, 
2-
3, 
3-
1, 
3-
4, and 
4-
5.
(
1 may be viewed as a special case of 
4 in which s = t. It is useful to
distinguish between them since 
1 cannot be joined with 
5.)

Two particular ways of joining the half-round characteristics will be es-
pecially useful: The �rst one is �
 = 
1-
2-
3, a characteristic for three
half-rounds that can be repeatedly joined with itself. The second one is 
4-

5, giving a characteristic for two half-rounds that can be used to compute
Ln�1 mod w. (More details including generalizations of 
4-
5 are given in
x8.1.3.)

Based on the earlier discussions, we can now construct characteristics for
n half-rounds of RC5, which we will denote by 
n. Characteristic 
n consists
of a sequence of half-round characteristics. Since there are many possible
values for the parameters of some of the half-round characteristics, there
are many possible paths (corresponding to many intermediate di�erences
(L0

i; R
0

i) for 1 � i � n� 1) from P 0 to C 0 for 
n, all of which have the same
probability p. If we let N denote the total number of possible paths for 
n,
then we de�ne the probability associated with 
n as p
n = Np.

For di�erent values of n, Table 3 lists the plaintext di�erence P 0, the
sequence of half-round characteristics in 
n, and the probability3 given by

3(1) The factor 1

4
in 
5 in Table 3 can be mostly eliminated by taking the carry e�ect
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p
n .

n P 0 
n p
n

3m (0; ew�1) 
10-�
- ��-�
-
4-
5 w�lg(w)�1
w

�
w�lg(w)
(2w)2

�m�1

3m+ 1 (ew�1; 0) 
30-
3-�
- ��-�
-
4-
5 w�lg(w)�1
1

�
w�lg(w)
(2w)2

�m

3m+ 2 (ew�1; ew�1) 
20-
2-
3-�
- ��-�
-
4-
5 w�lg(w)�1
1

�
w�lg(w)
(2w)2

�m

Table 3: Useful characteristics for n half-rounds and their associ-
ated probability.

A right pair with respect to 
n consists of two plaintexts P; P
� and their

ciphertexts C;C� such that for all 0 � i � n, the corresponding di�erence
(L0

i; R
0

i) has a form speci�ed by one of the sequences of the half-round charac-
teristics for 
n. For i � n� 1, a characteristic 
i, its associated probability
p
i , and a right pair with respect to 
i can be de�ned in a similar way.

Note that the type of the characteristics used in the di�erential attack
on RC5 is quite di�erent from the characteristics used in attacks on other
block ciphers, e.g. DES. In particular, for a given plaintext di�erence P 0

and ciphertext di�erence C 0, there are many possible paths (intermediate
di�erences) from P 0 to C 0, each occuring with the same probability. This
di�erential e�ect help boost the probability of getting a right pair.

8.1.3 Using right pairs to compute the subkeys

Here we �rst show how to compute the last subkey Sn using a right pair
with respect to the characteristic 
n. Then we analyze the number of right
pairs needed to recover every bit of Sn. For i < n, subkey Si can be obtained
similarly using right pairs with respect to 
i, following the reduction method
we outlined in x7.

Let 
4 and 
5 be the characteristics for the (n � 1)th and nth half-
rounds, respectively. Let s; t; u; v be the parameters for 
5 so that s; t are
the parameters for 
4. By considering the (n � 1)th half-round, we can
obtain the following formula:

Ln�1 mod w = Rn�2 mod w = (t� s) mod w:

into account when analyzing output di�erences. Hence the factor does not appear in p
n

in Table 4. (2) When n = 3m, the probability associated with the �rst occurrence of the
half-round characteristic 
1 is 1

w
instead of 1

2w
since the parameter s = w � 1.
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Given the ciphertext di�erence (L0

n; R
0

n), the values of t; u; v are easily
obtained from the form of 
5. So we need only compute s in order to
get Ln�1 mod w. In the nth half-round, the rotation amount Ln mod w
(= Rn�1 mod w) is equal to either (u � t) mod w or (v � t) mod w. Since
u, v, t, and Ln are known, it is obvious which case holds. In the �rst case
s = (v � Ln) mod w and in the second case s = (u � Ln) mod w, and the
value of Ln�1 mod w follows.

The key idea in the above analysis is the following:

� A certain pattern of the two di�erences L0

n�1; R
0

n�1 can reveal the
rotation amount Ln�1 mod w.

� The pattern can be derived from the ciphertexts.

There may be many possible characteristics for the last two half-rounds that
satisfy the above two conditions. The characteristic (
4;
5) is just one of
them, and it is one with small Hamming weights (the number of 1's in a
binary vector) in the ciphertext di�erence. (See x8.2 for discussions on other
possible characteristics.)

Below, we analyze the number of right pairs needed to recover every bit
of Sn, and we denote this number by T . We have seen that each right pair
allows us to compute Ln�1[lgw � 1::0]. Based on the discussions in x7, we
can therefore compute lgw consecutive bits of Sn. The bit positions depend
on the rotation amount Ln mod w, which can be assumed to be random for
a random right pair. Hence, the probability that there exists a bit Sn[s]
which it cannot be computed from any of the T random pairs is at most

w[(w � lgw)=w)]T :

If we set T = 2w, the above probability is less than 1% for w = 16; 32; 64.

8.1.4 Analyzing plaintext requirements

In this section, we will analyze the plaintext requirements for implementing
a di�erential attack on RC5 using the characteristics derived in the previous
sections. We will address the issue of noise in the analysis.

We de�ned the notion of a right pair in x8.1.2, and here we introduce the
notion of a good pair. Formally, a good pair with respect to characteristic 
n

consists of two plaintexts P; P � and their ciphertexts C;C� such that the
input and output di�erence (P 0; C 0) satis�es the condition of a right pair
with respect to the same characteristic. When implementing a di�erential
attack in practice, we can only observe good pairs, as opposed to right pairs.
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A good pair is not necessarily a right pair with respect to 
n due to cer-
tain noise|the sequence of intermediate di�erences follows a path di�erent
from the one speci�ed by 
n. We consider two types of noise:

1. Random noise. For a random pair of plaintexts (that may not be
a good pair), the probability that the pair of ciphertexts have the
di�erence C 0 = 
T is

prand =
(w � lgw) � w(w � 1)=2

22w
:

This noise is negligible when compared to p
n (the probability of a
right pair) if n � 23 (i.e. r � 11). When r � 12, the noise becomes
dominating.

2. Special noise. For a random good pair (having a �xed plaintext dif-
ference P 0 = 
P , there is a non-negligible probability that it is not a
right pair due to the special di�erence P 0. To see how this can happen,
we recall the characteristics for the last �ve half-rounds in a right pair.
The number of non-zero bits in (L0

i; R
0

i) for i = n � 4; : : : ; n are the
following:

(1; 1); (1; 0); (0; 1); (1; 1); (1; 2):

A pair of plaintexts with di�erence P 0 may follow the correct inter-
mediate di�erences until the (n � 5)th half-round and then have the
following number of non-zero bits in the last �ve half-rounds:

(1; 1); (1; 2); (2; 1); (1; 1); (1; 2):

This happens for a fraction of the good pairs, and yields good pairs that
are not right pairs. In general, the intermediate di�erences can be more
complicated and happen with a lower probability. Implementation
results show that the fraction of good pairs that are not right pairs is
no more than 10% for w = 32.

Bringing all this information together, we now compute the number of
good pairs needed for an attack with a high success rate. When n � 23,
prand can be ignored. If we generate 2w good pairs, then on average there
are 2w lg(w)=w = 2 lg(w) good pairs that are useful for predicting the value
of each bit Sn[s]. With high probability, more than half of the good pairs are
right pairs, so a majority vote will yield the correct value of Sn[s]. Therefore,
2w good pairs are enough for n � 23.
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As n gets larger, p
n will eventually become smaller than prand as noted
above, and so more good pairs will be needed in the attack. For RC5-32,
n = 24 is the starting point at which p
n becomes smaller than prand. In
this case, 8w good pairs are needed to guarantee a high success rate.

The expected number of plaintext pairs required for computing the last
subkey Sn is the product of (1) the number of good pairs needed and (2)
the expected number of plaintext pairs to get a single good pair (� 1

p
n
)

(see Table 3). For RC5-32/r/b (64-bit block size), the number of chosen
plaintext pairs are listed for increasing r (1 � r � 12) in Table 4.

r plaintexts r plaintexts r plaintexts

1 28 5 226 9 246

2 211 6 232 10 251

3 217 7 237 11 255

4 222 8 240 12 263

Table 4: Estimated number of chosen plaintext pairs for the dif-
ferential attack described in x8 on RC5 with 64-bit block size.

We implemented the attack for w = 32; r � 6 on a Sun4 workstation.
The actual number of plaintexts used matched the theoretical calculation,
and the success rate was very high. Note that for each Si, only 64 plain-
text/ciphertext pairs were actually used for computing the key, and all other
pairs were discarded immediately after they were generated. In addition, no
exhaustive search is needed in the attack. Therefore, in the implementation,
the time used for computing the S table was negligible (less than a second
on the Sun4) after su�cient good pairs were generated.

8.2 Improved di�erential attacks on RC5

In the preceding section, we described the details of the �rst di�erential
attack on RC5 by Kaliski and Yin [7]. In this section, we will summarize
the main ideas in the two subsequent improved di�erential attacks on RC5
by Knuden and Meier [9] and by Biryukov and Kushilevitz [3].

Knudsen and Meier's attack

In Knudsen and Meier's attack, the characteristics used for the \inner"
rounds of RC5 are the same as those in Kaliski and Yin's attack. For
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the rounds at the beginning and at the end of the cipher, however, more
complicated characteristics are derived by analyzing the relations among
input, output, and the subkeys. More speci�cally, they make the following
two insightful observations.

First, if the least signi�cant lgw bits of both halves of the plaintext are
chosen to have appropriate values (which are dependent on the subkeys),
then the two rotation amounts in the �rst full round of RC5 will be zero.
In other words, by imposing additional constraints on a pair of plaintexts,
the di�erence can propagate through the �rst full round with much higher
probability compared with the corresponding characteristic in the early at-
tack. It is also showed that detecting such appropriate constraints can be
done fairly e�ciently.

Second, the last-round characteristic (
4;
5) used in Kaliski and Yin's
attack (see x8.1.2) is just one possible characteristic for detecting a good
pair, and it is one with small Hamming weights. In general, the Hamming
weights of the di�erences in the last few rounds may follow a pattern sim-
ilar to a Fibonacci sequence. And such a relaxation for the constraints on
characteristics in the last few rounds also yield characteristics with higher
probabilities.

By combining these two observations, a factor of up to 29 reduction in
the plaintext requirements can be obtained when compared with Kaliski and
Yin's attack.

Knudsen and Meier also consider certain \di�erentially weak keys" of
RC5 with respect to their attack. They showed that for a small portion of
the keys (2�5:37t, for t � 1), their attack can be further enhanced by a factor
of approximately 22t.

Biryukov and Kushilevitz's attack

Biryukov and Kushilevitz consider more complex characteristics than
those used in the previous attacks and de�ne a more general notion of good
pairs with respect to data-dependent rotations. In particular, all plain-
text/ciphertext pairs that escape di�erences in rotation amounts can be
used in their attack, not just pairs that follow speci�c patterns (e.g., see
x8.1.2). It is not hard to see that such characteristics occur with much
higher probability than the one-bit characteristics. They also generalize
the above mentioned observations of Knudsen and Meier by introducing the
concepts of \space oracles" and \corrected Fibonacci sequences."

Roughly speaking, a space oracle is a partition of the set of all possible
plaintexts such that certain subsets of the partition have a much higher
density of good pairs than other subsets. So a space oracle is a generalization
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of the �rst observation made by Knudsen and Meier, and it allows good
pairs to be found in fewer steps than by searching through the entire set of
plaintexts. Biryukov and Kushilevitz derive e�cient space oracles for which
the di�erences in a pair of plaintexts can pass through two and a half rounds
at the beginning of the cipher with very high probability.

Corrected Fibonacci sequences more accurately model how the Hamming
weights of the di�erences propagates for a given good pair, since di�erences
can sometimes be canceled (and hence Hamming weights can be reduced)
due to the exclusive-or operation in the round function of RC5. Biryukov
and Kushilevitz experimentally generated all possible Fibonacci sequences
for all reasonable numbers of corrections up to 16 rounds, and the result
gives a good theoretic estimate for the probability of a good pair. Such a
model also provides a good method for �nding good pairs by �ltering the
output di�erence.

The use of the above more sophisticated techniques yields an additional
factor of up to 210 reduction in the plaintext requirements over the improve-
ments obtained in Knudsen and Meier's attack. Biryukov and Kushilevitz
estimate that RC5 with 12 rounds and 64-bit block size can be attacked
using about 244 plaintexts.

8.3 The limitations of di�erential cryptanalysis on RC5

Recall that in the di�erential cryptanalysis of RC5, we use only half-round
characteristics for which the pair of inputs have the same rotation amounts
(i.e., R0

i�1 mod w = 0). Such a choice for characteristics is based on the
following intuition: If the pair of inputs have di�erent rotation amounts in
a characteristic, then the pair of outputs can be expected to di�er in many
possible ways, and so the characteristic will not be useful in a di�erential
attack.

To give an analytical justi�cation of the above intuition, we will take
a closer look at the data-dependent rotations. First, for a pair of inputs
(X;R) and (X�; R�), we de�ne

Y = X <<< R;

Y � = X� <<< R�;

X 0 = X �X�;

Y 0 = Y � Y �:

For a give input di�erence X 0 and two rotation amounts R and R�, we
will analyze the distribution of the output di�erence Y 0 when X and X�
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range over all possible values. Let

D(X 0; R;R�) = set of all possible values for Y 0, and

N(X 0; R;R�) = number of distinct vectors in D(X 0; R;R�).

Lemma 8.1 Let r0 = (R�R�) mod w and k = w
gcd(w;r0) . Then N(X 0; R;R�) =

2
k�1

k
w and each of the N(X 0; R;R�) distinct binary vectors occurs exactly
2w

N(X0;R;R�) times in the set D(X 0; R;R�).

Proof. We prove the lemma by analyzing the constraints imposed on a
vector y 2 D(X 0; R;R�). We �rst rewrite y as follows:

y = (X <<< R)� (X� <<< R�)

= (X <<< R)� (X <<< R�)� (X 0 <<< R�)

Therefore, for 0 � i � w � 1,

y[i] = X[(i�R) mod w]�X[(i�R�) mod w]�X 0[(i�R�) mod w]:

Consider the special case where r0 is odd. The only constraint imposed
on y is

parity(y) = parity(X 0):

Hence, the number of di�erent y's is 2w�1 and each one occurs exactly twice.
The general case can be analyzed similarly.

In what follows, we consider some implications of Lemma 8.1 by con-
trasting the case that r0 = (R�R�) mod w = 0 with the case r0 6= 0:

1. r0 = 0. The input di�erence does not a�ect the rotation amount.

In this case, we have k = 1 and N(X 0; R;R�) = 1. In other words,
there is only one possible output di�erence Y 0. All the half-round
characteristics used in the di�erential attack (see x8.1.1) belong to
this case.

2. r0 6= 0. The input di�erence a�ects the rotation amount.

In this case, k is a power of 2 and ranges between 2 (when r0 = w=2)
and w (when r0 is odd). Hence, N(X 0; R;R�) ranges between 2

w

2

and 2w�1, and each of the di�erent binary vectors occurs the same
number of times. In other words, the output di�erence Y 0 is uniformly
distributed in a set of at least 2

w

2 possible values when the pair of
inputs with a �xed di�erence ranges over all possible values.
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From the above discussions, we can see that the di�erence in the input
are spread out in a drastic way once the di�erence in a half-round a�ects the
rotation amount. Clearly, the larger the Hamming weight in the di�erence,
the higher chance that the di�erence will a�ect the rotation amounts. So
a good characteristic for RC5 should keep the Hamming weights for the
intermediate di�erences as small as possible.

8.4 Markov properties of RC5

Here we show that RC5 is not a Markov cipher with respect to either the
exclusive-or \�" di�erence the subtraction \�" di�erence. Then we argue
that even though RC5 is not a Markov cipher, it has an important property
of a Markov cipher which is useful for a cipher to be secure against di�erential
cryptanalysis.

The notion of a Markov cipher was introduced by Lai, Massey, and
Murphy [11], and it is a useful tool in analyzing the resistance of an iterative
cipher to di�erential cryptanalysis. Loosely speaking, an iterative cipher is
Markov if there is a way of de�ning di�erences such that the probability
of an output di�erence of the round function depends only on the input
di�erence and is independent of the values of inputs. It has been proved
that both DES and IDEA are Markov ciphers[11].

If an iterative cipher is Markov and its round subkeys are independent,
then the sequence of di�erences at each round output forms a Markov chain.
Under certain assumptions, every output di�erence will be roughly equally
likely after su�ciently many rounds. Hence, the cipher will be secure against
a di�erential attack when the number of rounds is su�ciently large.

Lemma 8.2 RC5 is not a Markov cipher with respect to exclusive-or.

Proof. Let (Li�1; Ri�1) and (L
�

i�1; R
�

i�1) be a pair of inputs to a half-round
of RC5. If Ri�1 = R�

i�1 = 0, then we have

Ri = Li�1 + Si;

R�

i = L�

i�1 + Si:

Let es denote the w-bit binary vector which is 1 in bit s and 0 everywhere
else. If we set L0

i�1 = es for some s < w � 1, then R0

i = es with probability
1=2 for random key Si. On the other hand, if Ri�1 = R�

i�1 = 1 , then we
have

Ri = (Li�1 � 1) <<< 1 + Si;

R�

i = (L�

i�1 � 1) <<< 1 + Si:
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When L0

i�1 = es, the probability that R0

i = es is zero since Ri and R�

i will
di�er in bit position t with t � s + 1 because of the rotation. Thus, the
probability of an output di�erence depends on the values of inputs, so RC5
is not Markov with respect to exclusive-or.

Lemma 8.3 RC5 is not a Markov cipher with respect to subtraction.

Proof. Similar to the proof of Lemma 8.2.

The main reason that RC5 is not a Markov cipher with respect to
exclusive-or and subtraction is the data-dependent rotation. Furthermore,
it is very unlikely that RC5 is a Markov cipher with respect to some com-
plicated di�erence measure. (For most block ciphers, the di�erence measure
is quite obvious. There is one exception though since IDEA is a Markov
cipher with respect to an unusual di�erence measure.)

A Markov cipher has many properties, but the property that is important
for the cipher to be secure against di�erential attack is that every output
di�erence will be roughly equally likely after su�ciently many rounds. We
have seen that RC5 is not a Markov cipher due to the use of data-dependent
rotations. However, as we have previously discussed in x8.3, the output
di�erence of Equation Y = X <<< R is uniformly distributed over a large set
of possible values if the input di�erence a�ects the rotation amounts. As
the number of rounds increase, the probability that the input di�erence to a
half-round will a�ect the rotation amounts approaches one. Even though it
may not be the case that every output di�erence will occur, the large number
of possible output di�erences would make a di�erential attack impossible.

In sum, RC5 is not Markov when we consider each single half-round,
but RC5 with a su�ciently large number of rounds possesses a Markov-like
property that is important for preventing a di�erential attack.

9 RC5 and Linear Cryptanalysis

In this section, we will study the security of RC5 against linear cryptanalysis.
We will focus our discussions on how to construct linear approximations for
RC5 based on the results in [7]. We will also consider ways of using these
linear approximations to mount linear attacks on RC5 and some hidden
assumptions that a�ect the success rate of such attacks [21].

As we will see, it seems to be much harder to mount a linear attack
against RC5 than a di�erential attack. So later in the section, we will
analyze how the mixed use of rotations and additions in RC5 helps prevent
linear cryptanalysis.
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9.1 Linear approximations for a half-round of RC5

In this section, we consider linear approximations for a half-round of RC5.
We will say that a linear approximation is perfect if it holds with bias 1=2
(probability 1 or 0). (Note that this perfection is from the viewpoint of the
attack!)

Recall that there are two equations in a half-round.

Li = Ri�1;

Ri = ((Li�1 �Ri�1) <<< Ri�1) + Si:

For the �rst equation, there are many trivial approximations which in-
volve the same bits of Li and Ri�1 and hold with probability 1. For example,

Li[0] = Ri�1[0]:

Following notation that has been established in the literature [14], we will
denote the above trivial approximation as -.

To �nd good linear approximations for the second equation, we decom-
pose it into three equations, each of which involves only a single primitive
operation, and we consider possible linear approximations for each of them.

X = Li�1 �Ri�1;

Y = X <<< Ri�1;

Ri = Y + Si:

The bias of an approximation for Ri = Y +Si is in general dependent on
the subkey Si. Consequently, the bias of an approximation for a half-round
is also key-dependent. Throughout our discussions, we will use average bias

over all possible subkeys as the measurement for the bias of an approxima-
tion of RC5. More precisely, given an approximation A, we de�ne

average bias of A = (1=2w)�
X
Si

(bias of A when subkey is Si):

Since the bias of A for subkey Si is always non-negative, the average bias
of A is also non-negative. The average bias appears to be a fairly easy to
compute while useful measurement in the linear cryptanalysis of RC5 as well
as other block ciphers. Similar to the average analysis for di�erential char-
acteristics in x8.1.1, we assume that the subkeys will be essentially random
and independent of one another given a good key expansion algorithm.
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9.1.1 Analyzing individual operations

The exclusive-or operation

The equation X = Li�1 �Ri�1 has numerous perfect linear approxima-
tions. In particular, all approximations involving the same bits of X, Li�1,
and Ri�1 are perfect. All other approximations have zero bias.

The rotation operation

The linear approximations for the equation Y = X <<< Ri�1 can be
divided into two types depending on whether bits of Ri�1 are involved.

� No bits of Ri�1 are involved.

Any such approximation involving just one bit of X and Y holds with
probability 1=2 + 1=2w, since for one rotation amount, the bits are
guaranteed to be equal and for the other w� 1 amounts, the bits will
be equal with probability 1=2 (assuming the inputs are random). In
general, for t = 0; : : : ; lg(w), an approximation involving 2t bits of X
(spaced at w=2t-bit intervals) and 2t bits of Y (that is a rotation of
X) holds with probability 1=2 + 2t=2w.

� Some bits of Ri�1 are involved.

Some of these approximations have a non-zero bias. For example,

Y [0] = X[0] �Ri�1[0] (3)

holds with probability 1=2 + 1=2w, since when the rotation amount
is zero, Ri�1[0] = 0 and Y [0] = X[0]. When the rotation amount is
non-zero, the equation holds with probability 1=2. We remark that
an approximation will have zero bias if it involves any bits of Ri�1[s]
where s � lg(w).

The addition operation

The best linear approximation for the equation Ri = Y + Si is

Ri[0] = Y [0] + Si[0]; (4)

which holds with probability 1 for any subkey Si (so the average bias is
1=2). All other approximations are not perfect. For example, the bias of the
approximation Ri[1] = Y [1] ranges from 0 to 1/2 for di�erent subkeys and
is averaged at 1=4. In general, the average bias gets smaller as more bits are
involved in an approximation.
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9.1.2 One-bit linear approximations

We can construct many possible linear approximations for a half-round of
RC5 given the approximations for individual operations. To start with, we
consider some one-bit linear approximations.

By joining X[0] = Li�1[0] � Ri�1[0], Approximation (3), and Approxi-
mation (4), we obtain the following approximation for a half-round:

Ri[0] = Li�1[0]� Si[0]:

This approximation holds with probability 1=2 + 1=2w for any subkey Si.
We will denote it as E. Note that E has an average bias of 1=2w which is the
same for any subkey Si. (For simplicity, we will omit the word \average"
when it is clear from the context.) A nice feature of E is that it can be
alternated with the trivial approximation -.

For the �rst half-round which uses only the + operation, both approxi-
mations

L1[0] = L0[0] � S0[0] and R1[0] = R0[0] � S1[0]

hold with probability 1. We will denote them as C and D, respectively.

9.1.3 Multiple-bit linear approximations

Here we will consider some linear approximations for a half-round of RC5
that involve multiple bits. We will then compare the biases of these approx-
imations with the biases of one-bit approximations.

For the <<< operation, we consider approximations such that none of
the bits of Ri�1 is involved. Again, for t = 0; :::; log(w), an approximation
involving k = 2t bits of X (with equal intervals) and 2t bits of Y (that is a
rotation of X) holds with bias 2t=2w. For example, for w = 16 and t = 2,
the approximation X[0; 4; 8; 12] = Y [1; 5; 9; 13] holds with bias 1=8.

For the + operation, we need to match with the approximations for <<<
in order to cancel Y . So we choose the approximation for + that involves the
same bits of Y and Ri as in the approximation for <<< (e.g., Y [1; 5; 9; 13] =
Ri[1; 5; 9; 13]).

Once we �x the approximations for <<< and +, we choose the approx-
imation for � that matches with the approximation (e.g., X[0; 4; 8; 12] =
Li�1[0; 4; 8; 12] �Ri�1[0; 4; 8; 12]).

As the number of involved bits k in the approximation increases, the
bias for <<< increases and the average bias for + decreases. At �rst glance,
it is not clear for which value k the approximation gives the largest average
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bias. We did some preliminary experiments, and the results for word sizes
w = 4; 8; 16 are provided in the following three tables.

w = 4.

# bits involved (k) bias for <<< average bias for + total average bias

1 1=8 1=2 2=16

2 1=4 � 1=4 � 2=16

4 1=2 3=16 3=16

w = 8.

# bits involved (k) bias for <<< average bias for + total average bias

1 1=16 1=2 32=29

2 1=8 � 1=4 � 32=29

4 1=4 � 27=28 � 27=29

8 1=2 18=28 36=29

w = 16.

# bits involved (k) bias for <<< average bias for + total average bias

1 1=32 1=2 2048=216

2 1=16 � 1=4 � 2048=216

4 1=8 � 4368=216 � 1092=216

8 1=4 � 1074=216 � 537=216

16 1=2 608=216 608=216

We notice that for word sizes w = 4; 8, the approximations that involve
all w bits have the largest average bias. However, experiments also showed
that for word sizes w = 16; 32; 64 (as proposed in [17]), the approximations
that involve one bit have the largest average bias.
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9.2 Linear approximations of RC5

Given the linear approximations for a half-round of RC5 in x9.1, it is quite
easy to construct linear approximations for RC5 with any number of rounds.

We again start with one-bit linear approximations. It is easy to see
that D-E-E-...E- is a linear approximation for i half-rounds if i is even,
and CE-E-...E- is a linear approximation for i half-rounds if i is odd. For
n� 1 = 2r half rounds, the approximation D-E-E-...E- may be written as

R0[0]� Ln�1[0] = Tn; (5)

where
Tn = S1[0]� S3[0] � � � � � Sn�2[0]

is a �xed key bit for a given expanded key table S.
Since E appears exactly (n� 1� 2)=2 = r� 1 times, by Matsui's \piling-

up" lemma4 [14], Approximation (5) holds with probability 1=2 + 1=2wr�1.
As a consequence, the bit R0[0]� Ln�1[0] is biased toward Tn.

In general, we can also construct linear approximations for RC5 that in-
volve multiple bits, but as it is discussed in x9.1.3, such approximations
would have smaller biases than one-bit approximations for the intended
block sizes.

9.3 Implementing the linear attack

In this section, we discuss two approaches of using Approximation (5) to
mount a linear attack on RC5 and some issues in an actual implementation.

A fairly straightforward approach would be to follow standard techniques
in linear cryptanalysis. More speci�cally, the basic idea is to try each of the
232 possible subkeys Sn, considering the one that yields the largest exper-
imental bias for Approximation (5) to be the correct key. However, it is
possible that many guesses for Sn may yield essentially the same bias where
the wrong guesses can only be ruled out after unwrapping several rounds.
Therefore, the work e�ort for this attack could be much more than 232, and
experiments are needed to correctly estimate the actual work e�ort. Again
following standard techniques, the plaintext requirement for this attack is
approximately equal to the inverse square of the bias, that is, 4w2(r�1).

A more sophisticated approach follows the general method on attacking
RC5 outlined in x7. The basic idea is to �rst obtain the key bit Tn and

4It has been shown [5] that the \piling-up" lemma may not be applied to certain
de�nitions of average bias. In our case, since the average bias of E is the same for all keys,
the lemma can be applied.
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then use Approximation (5) to approximate Ln�1[0] for each given plain-
text/ciphertext pair. As discussed in x7, the bit Ln�1[0] will then allow one
to compute the subkey Sn using Equation (2). The details of this attack
were presented in [7], and it was estimated that the success rate of the attack
is around 90% with 4w2(r�1) plaintexts. However, Selcuk [21] later discov-
ered that the actual success rate of the attack was only around 10-15% due
to certain hidden assumptions.

In particular, since Equation (2) is derived for each �xed rotation amount
Rn�1 mod w = s, to use Approximation (5) together with Equation (2), the
following assumption is needed:

� , Assumption R: For s = 0; :::; w � 1, Approximation (5) holds with
probability (approximately) 1=2+1=2wr�1 for randomly chosen plain-
text/ciphertext pairs such that Rn�1 mod w = s,

Preliminary experiments reported in [21] showed that the bias varied for
each value of s. More analysis and experiments are still on going to fully
determine the plaintext requirements in more sophisticated linear cryptan-
alytic attacks.

9.4 The limitations of linear cryptanalysis on RC5

It is interesting to consider the limitations of linear cryptanalysis on RC5 by
analyzing how the mixed used of operations help prevent from constructing
good linear approximations.

From the discussions in x9.1, we can see that the rotation and addition
operations are incompatible when trying to �nd linear approximations for
a half-round that have the largest average bias: the bias gets larger for <<<
if more bits are involved in an approximation, and the average bias gets
smaller for + if more bits are involved. Preliminary experiments give strong
evidence that for w = 16; 32; 64, approximation E has the largest average
bias among all approximations for a half-round (see Appendix) for more
details).

We thus conjecture that for the word sizes w = 16; 32; 64 proposed in [17],
linear approximation DE-E-... has the largest average bias among all ap-
proximations for RC5. If the conjecture holds, we would then be able to
conclude that standard linear cryptanalysis is only e�ective for RC5 with a
very small number of rounds.

In addition to the experimental evidence, we also have analytical ev-
idence for the correctness of the conjecture. In particular, we show that
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E is a best half-round approximation that can be alternated with a trivial
approximation.

Lemma 9.1 Let set M contain all half-round approximations in which nei-

ther bits of Ri�1 nor bits of Li are involved. Then E has the largest average

bias among all approximations in M .

Proof. Let F be an arbitrary approximation in M . Then F can be de-
composed into three approximations, one for each operation. There may
be many possible decompositions, and we consider the constraints on the
three approximations for a given decomposition. The approximation for
Y = X <<< Ri�1 cannot involve Ri�1[s] with s � lg(w) since F has bias zero
otherwise. Hence, the approximation for X = Li�1 � Ri�1 cannot involve
X[s] with s � lg(w); otherwise, either F involves bits of Ri�1 or it has bias
zero. Any approximation for Y = X <<< Ri�1 involving only X[s] with
s � lg(w)� 1 holds with bias at most 1=2w since there is only one rotation
amount that can match the bit positions of X and Y . Therefore, F has bias
at most 1=2w. Since E holds with bias 1=2w, it is a best approximation
among all approximations in M .

In sum, both experimental and analytical results show that the mixed use
of rotation and addition operations provides good security for RC5 against
linear cryptanalysis.

10 Further Considerations

10.1 Exhaustive search attack on RC5

We know that the security of a block cipher against exhaustive search is
closely related to the key size used in the block cipher. The secret key used
in RC5 has a variable length b with allowed values range from 0 to 255
bytes, and the expanded key table for RC5 with r rounds has 2(2r+2)w bits
for the 2w-bit block size. So the e�ort for a brute-force attack on RC5-w=r=b
is minf28b; 2(2r+2)wg. Hence, if both the length of the secret key and the
number of rounds are su�ciently large, RC5 is secure against exhaustive
search.

Unlike DES, which has no parameterization and hence no 
exibility in
the security against exhaustive search, RC5 permits upgrades as necessary.
For example, one can easily upgrade RC5 with 56-bit key to an 80-bit key.
As technology improves, and as the true strength of RC5 algorithms becomes
better understood through analysis, the most appropriate parameter values
can be chosen.
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r Nr(31) r Nr(31)

1 74,464,461 5 99,998,944

2 96,489,501 6 99,999,953

3 99,709,954 7 99,999,996

4 99,981,305 8 100,000,000

Table 5: A statistical test for the rotation operation. In the table,
Nr(31) denotes the total number plaintexts in 100 million ran-
dom plaintexts for which 
ipping bit 31 of the plaintext results in
changes in some rotation amount within r rounds.

In January 1997, RSA Laboratories has launched the RSA Data Security

Secret-Key Challenge [20] for both DES and RC5, in the hope that the
resistance of ciphers to exhaustive key search attacks can be more accurately
gauged in the future. For each contest, the unknown plaintext message is
preceded by three known blocks of text that contain the 24-character phrase
\The unknown message is: ". While the mystery text that follows will
clearly be known to a few employees of RSA Data Security, the secret key
itself used for the encryption was generated at random and never revealed to
the challenge administrators. The goal of each contest is for participants to
recover the secret randomly-generated key that was used in the encryption.

As of this writing, the challenges for RC5 with a 40-bit key, 48-bit key
and 56-bit key have already been solved [20]. It took 3.5 hours for the 40-
bit challenge, 313 hours for the 48-bit challenge, and 265 days for the 56-bit
challenge, as was expected. It is anticipated, however, that some of the
longer key lengths (80 bits or more) will remain an unsolved challenge for
some considerable time to come.

10.2 Statistical analysis of RC5

Statistical analysis of RC5 for both the key expansion routine and the en-
cryption routine has been one of the ongoing project. So far we have per-
formed a series of standard statistical analysis including the frequency test,

the serial test, the poker test, the run test, and the auto-correlation test for
a selection of key sizes and number of rounds. Early results show that RC5
has good statistical characteristics.
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Here we present the results of one special statistical test that examines
how fast a di�erence in a pair of plaintexts will result a di�erence in the
rotation amounts as the number of rounds increases. As we pointed out
earlier, the heavy use of data-dependent rotations is one distinguished fea-
tures of RC5, and hence it is important to know how this feature a�ects the
cipher statistically.

More speci�cally, we performed the following test. In 100 million (�
223) trials with random plaintext and keys, we checked whether a pair of
plaintexts di�ering in a single bit lead to some di�erent intermediate rotation
amounts. For RC5-32/r (64-bit block size, r rounds), let Nr(s) denote the
total number of such pairs in 100 million trials when bit s of the plaintext
is 
ipped. Table 5 lists the value of Nr(31) for increasing r.

For other values of s, Nr(s) increases (as r increases) at a faster rate
than Nr(31). Overall, we found that with very high probability, 
ipping an
input bit would a�ect some rotation amount for RC5-32 with eight rounds.

10.3 Modi�ed versions of RC5

In the analysis of a cipher, it is often very instructive to consider the resis-
tance of some cipher variant to cryptanalytic attacks. This often gives some
insight to the security of the real cipher. So in this section, we consider some
modi�ed versions of RC5. We try to analyze the strength and weakness of
each new version compared to RC5. We name the modi�ed versions in a
certain way just for ease of reference.

RC5XOR: Ri = ((Li�1 �Ri�1) <<< Ri�1)� Si
RC5XOR is less secure than RC5 against both di�erential and linear

cryptanalysis. In particular, the change of + to � increases the probabil-
ity of a half-round characteristic by a factor of about 2t if the Hamming
weight of the characteristic is t. Nevertheless, existing results [3] showed
that RC5XOR serves as a good starting point for one to analyze RC5 since
it preserves the basic structure of RC5 while only requiring a smaller number
of plaintexts to mount the same attack.

RC5P: Ri = ((Li�1 +Ri�1) <<< Ri�1) + Si
The change of � to + reduces the probability of some half-round char-

acteristics by a small factor if exclusive-or is used as measure of di�erence.
However, since addition is used twice, one can simply choose integer subtrac-
tion as the measure of di�erence, and so the strength of RC5P is comparable
to RC5XOR against di�erential attacks. RC5P and RC5 seem to have the
same security against linear attacks.
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RC5PFR: Ri = ((Li�1 � Ri�1) <<< ri) + Si, where ri is a �xed rotation
amount. The value ri might be made public as a parameter of the cipher.

Even though the existing di�erential or linear attacks do not work well
on RC5PFR due to its �xed rotation amounts, RC5PFR does not appear to
be a strong cipher. In particular, starting with a given input di�erence, the
only uncertainty in the evolution of di�erences is the carry e�ect. Therefore,
there exist characteristics that hold with fairly high probability.

RC5KFR: Ri = ((Li�1 � Ri�1) <<< ri(K)) + Si, where ri(K) is a rotation
amount derived from the secret keyK. In other words, the rotation amounts
are key dependent and �xed for a given key.

For RC5KFR, if the attacker can guess the correct rotation amounts
in each round, then the cipher reduces to RC5PFR. This requires about
210r guesses, and hence it may not be feasible for large r. The existing
di�erential or linear attacks do not seem to apply to RC5KFR. However,
since the rotation amounts are �xed, there might be some shortcuts for
attacking the variant that we are not aware of at this point.

RC5RA: Ri = ((Li�1 � Ri�1) <<< f(Ri�1)) + Si, where F (Ri�1) depends
on all bits of Ri�1 (not just the least signi�cant �ve bits).

Since all existing di�erential attacks on RC5 use characteristics for which
the pair of inputs both have the same rotation amount, the same attacks
on RC5 would become less ine�ective on RC5RA. Potentially, RC5RA may
be a very strong cipher in light of our discussions in x8.3 about how data-
dependent rotations provide a systematic way of preventing di�erential crypt-
analysis.

There are di�erent ways of realizing RC5RA. One possibility would be to
modular reduce Ri by some small carefully chosen odd number, and another
possibility would be to multiply Ri by some carefully chosen odd w-bit word
and use the high order bits as the rotation amount. Both approaches would
slow down the round function of RC5. Nevertheless, the increase in strength
in each round makes it possible to reduce the number of rounds so that the
overall speed of the cipher will remain the same as or perhaps even faster
than the original RC5.

The recently proposed block cipher called RC6 [18] has adopted the
above mentioned idea of computing rotation amounts. In RC6, the rotation
amounts are obtained by taking the top �ve bits of the quadratic function
f(x) = x(2x + 1) mod 232. Early analysis [4] showed that the combination
of multiplication with data-dependent rotation in RC6 is very e�ective in
thwarting di�erential attacks.
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Part III

Executive Summary

In this report, we have assessed the security of RC5 using standard tech-
niques from di�erential and linear cryptanalysis. We have also summarized
the known cryptanalytic results on RC5.

The results to date, building on one another to apply advanced forms of
di�erential and linear attack, have been very encouraging. We observe that
RC5 with 12 rounds and 64-bit block size give roughly the same security as
DES against these attacks { 244 chosen plaintext pairs for RC5 as opposed
to 243 known plaintexts for DES. The extra speed of RC5 allows one to use
extra rounds, thereby providing an additional margin of safety. Based on
the known results, we conclude that RC5 with 16 rounds and 64-bit block
size can provide good security against existing analytical attacks.

With the cipher receiving considerable attention from cryptanalysts world-
wide, a picture of the security o�ered by RC5 has been quick to develop.
Acceptance of the cipher is growing, and RC5 has been discussed for in-
clusion in various standards e�orts and has been published by the IETF in
RFC2040 [1]. Three years on, it seems that the RC5 block cipher o�ers a
computationally inexpensive way of providing secure encryption.

We emphasize again two distinguishing features of RC5. The �rst fea-
ture is the heavy use of data-dependent rotations. Our analysis shows that
data-dependent rotations are helpful for preventing di�erential and linear
cryptanalysis. The second feature is the exceptional simplicity of the cipher,
with the objective of making analysis easier. As we have seen, most of the
characteristics and linear approximations for RC5 were derived analytically
without any experimental search.

As of this writing, a new block cipher called RC6 [18], which is closely
built on RC5, has been submitted to NIST for consideration as a candidate
for the Advanced Encryption Standard (AES). Like RC5, RC6 makes essen-
tial use of data-dependent rotations and maintains simplicity in its design.
We hope that the simple design of RC5 will help fully determine its security
{ and the security of ciphers derived from it { in a rapid way.
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