
1

Selecting Cryptographic Key Sizes

Arjen K. Lenstra
Arjen.Lenstra@citicorp.com

Eric R. Verheul
Eric.Verheul@nl.pwcglobal.com

October 27, 1999

Abstract. In this article we offer guidelines for the determination of key sizes for
symmetric cryptosystems, RSA, and discrete logarithm based cryptosystems both
over finite fields and over groups of elliptic curves over prime fields. Our
recommendations are based on a set of explicitly formulated hypotheses, combined
with existing data points about the cryptosystems.

1. Introduction

1.1. Introduction
Cryptography is one of the most important tools that enable e-commerce because
cryptography makes it possible to protect electronic information. The effectiveness of this
protection depends on a variety of mostly unrelated issues such as cryptographic key size,
protocol design, and password selection. Each of these issues is equally important: if a
key is too small, or if a protocol is badly designed or incorrectly used, or if a password is
poorly selected or protected, then the protection fails and improper access can be gained.
In this article we give some guidelines for the determination of cryptographic key sizes.
Other protocol- or password-related issues are not discussed. We do not aim to predict
the future, but if current trends persist, then following our guidelines will result in
acceptable security for commercial applications of cryptography.

Key size recommendations are scattered throughout the cryptographic literature or
may, for a particular cryptosystem, be found in vendor documentation. Unfortunately it is
often hard to tell on what premises (other than marketability) the recommendations are
based. As far as we know this article is the first uniform, clearly defined, and properly
documented treatment of this subject for the most important generally accepted
cryptosystems. We formulate a set of explicit hypotheses about future developments and
apply these uniformly to existing data about the cryptosystems. The resulting key size
recommendations are thus obtained in a uniform mechanical way independent of further
assumptions or non-scientific considerations. Despite our attempt to be objective we do
not expect that our model is to everyone’s taste. The underlying model can, however,
easily be changed without affecting the overall approach, thereby making this article
useful also for those who object to our results.

Although the choice of key sizes usually gets the most attention, nearly all failures
are, in our experience, not due to inadequate key sizes but to protocol or password
deficiencies. To illustrate this, the cryptographic key sizes used by the popular email
encrypter “Pretty Good Privacy” (PGP) offer an acceptable level of security for current
applications. But the user-password that protects the private PGP keys stored on an

2

Internet-accessible PC does not necessarily offer the same security. Even if the user is
relatively security-conscious and selects a password consisting of 9 characters randomly
chosen from 62 alphanumeric choices, the resulting security is comparable to the security
offered by the recently broken “Data Encryption Standard” and thereby unacceptable by
today’s standards. An even more disturbing example can be found in many network
configurations. There each user may select a password that consists of 14 characters,
which should, in principle, offer enough security. Before transmission over the network
the passwords are encrypted, with the interesting feature however that each password is
split into two parts of at most 7 characters each, and that each of the two resulting parts is
treated separately, i.e., encrypted and transmitted over the network. This effectively
reduces the password length of 14 to 7, which is not sufficiently secure. For more
examples we refer to [1]. Thus, application of the guidelines given here makes sense only
after one is convinced of the overall security of the design, of its implementation, and of
end-to-end system engineering.

Our suggestions are based on reasonable extrapolations of developments that have
taken place during the last few decades. This approach may fail: a single bright idea may
prove that any or all of the currently popular cryptographic protocols is considerably less
effective than expected. It may even render them completely ineffective, as shown by the
following two examples. In the early eighties the then popular knapsack-based
cryptosystems were suddenly wiped out by a new type of attack. More recently, three
independent groups of researchers showed that elliptic curve cryptosystems based on the
use of curves of trace one are easily breakable. In this article we discuss only
cryptosystems for which it is believed to be unlikely that such catastrophes will ever
occur. Nevertheless, for some of these systems non-trivial, but non-catastrophic, new
cryptanalytic insights are obtained on a fairly regular basis. So far, a gradual increase in
key sizes has been an effective countermeasure against these new insights. From an
application point of view it is to be hoped that this will not change anytime soon. It is the
purpose of this article to give an idea by how much key sizes have to be increased to
maintain a comfortable margin of security.

If sufficiently large quantum computers can be built, then all asymmetric key
cryptosystems discussed in this article are insecure (cf. [24]). It is unclear if quantum
computers are feasible at all. Our suggestions do not take quantum computers into
account. Neither do we incorporate the potential effects of molecular-computing (cf.
[21]).

1.2. Run time convention
All run time estimates in this article are based on actual run times or reliable estimates of
run times on a 450MHz Pentium II processor, currently one of the most popular
commonly available processors. A ‘PC’ always refers to this processor. In the literature,
computing power is often measured in Mips Years, where a Mips Year is defined as the
amount of computation that can be performed in one year by a single DEC VAX 11/780.
This measure has often been criticized because it is unclear how it can be used in a
consistent manner for processors with instruction sets different from the VAX. We fully
agree with the concerns expressed in [27].

Nevertheless, because of its popularity and the wide acceptance it has gained, we
use this measure here as well. We use the convention that one year of computing on a PC

3

is equivalent to 450 Mips Years, where it should be kept in mind that ultimately all our
estimates are based on run times on a PC and not on the actual definition or our definition
of Mips Years. As shown below the two definitions are, however, sufficiently close. Our
Mips Year figures should therefore be compatible with Mips Years figures found
elsewhere. We write MMY for one million Mips Years.

1.3. Lower bounds.
The guidelines in this article are meant as lower bounds in the sense that keys of sizes
equal to or larger than the recommended sizes attain at least a certain specified level of
security. From a security point of view it is acceptable to err on the conservative side by
recommending keys that may be slightly larger than actually required. Most key size
guidelines in this article are therefore obtained by systematically underestimating the
computational effort required for a successful attack. Thus, keys are estimated to be
weaker than they are in reality, which is acceptable for our purpose of finding lower
bounds. In some cases slight overestimates of the attack effort are used instead, but in
those cases there are other factors that ensure that the desired level of security is
achieved.

1.4. Equivalence of attack efforts
We present key size recommendations for several different cryptosystems. For a certain
specified level of security these recommendations may be expected to be equivalent in
the sense that the computational effort or number of Mips Years for a successful attack is
more or less the same for all cryptosystems under consideration. So, from a
computational point of view the different cryptosystems offer more or less equivalent
security when the recommended key sizes are used.

This computationally equivalent security should not be confused with, and is not
necessarily the same as, equipment cost equivalent security, or cost equivalent security
for short. Here we say that two systems offer cost equivalent security if accessing or
acquiring the hardware that allows a successful attack in a certain fixed amount of time
costs the same amount of dollars for both systems. Note that although the price is the
same, the hardware required may be quite different for the two different attacks; some
attacks may use PCs, for other attacks it may be possible to get the required Mips Years
relatively cheaply by using special-purpose hardware. Following our guidelines does not
necessarily result in cost equivalent security. In (3.6) and (4.6) we indicate how our
guidelines may be changed to obtain cost equivalence, thereby possibly giving up
computational equivalence.

There are at least two reasons why we opted for computationally equivalent
security as opposed to cost equivalent security. Most importantly, we found that
computational equivalence allows rigorous analysis, mostly independent of our own
judgment or preferences. Analysis of cost equivalence, on the other hand, depends on
subjective choices that change over time, and that have a considerable effect on the
outcome. Thus, for cost equivalence there is a whole spectrum of ‘reasonable’ outcomes,
depending on one’s perception of what is reasonable. In (4.6) we present three points of
the spectrum.

Another reason why we restricted ourselves to computational equivalence is that,
in the model we have adopted, we need a workable notion of equivalence to achieve our

4

goal of determining acceptable key size recommendations – achieving any type of
equivalence in itself has never been our goal. Whether or not the resulting
recommendations are indeed acceptable depends on how acceptable our model is found
to be.

2. The cryptographic primitives

2.1. The Wassenaar Arrangement
The Coordinating Committee for Multilateral Export Controls (COCOM) was an
international organization regulating the mutual control of the export of strategic
products, including cryptographic products, from member countries to countries that
jeopardize their national security. Member countries, e.g. European countries and the US,
implemented the COCOM regulations in national legislation (e.g. the ITAR in the US).
The Wassenaar Arrangement is a follow-up of the COCOM regulations. The current
restrictions in the Wassenaar Arrangement (December 1998) with respect to
cryptography are rather detailed (cf. www.wassenaar.org). For five types of
cryptographic primitives a maximum key size is given for which export does not require
a license. In this article we limit ourselves to these cryptographic primitives. Due to the
nature of the Wassenaar Arrangement, it is not surprising that it turns out that these key
sizes do not provide for adequate protection of the majority of commercial applications.

We distinguish the cryptographic primitives into symmetric-key (or secret-key)
and asymmetric-key (or public-key) cryptosystems. Such systems are instrumental to
build e-commerce enabling solutions and, more specifically, can be used to achieve
confidentiality, integrity, authenticity, and non-repudiation of electronic information. For
simplicity and without loss of generality we assume two communicating parties, a sender
S and a receiver R, who want to maintain confidentiality of the communication from S to
R. At the end of the section we briefly mention cryptographic hash functions as well.

2.2. Symmetric key cryptosystems
Description. In symmetric key cryptosystems S and R share a key. To maintain
confidentiality the key should be kept secret. The size of the key, i.e., its number of bits,
depends on the symmetric key cryptosystem. Often both the message and its encryption
consist of a whole number of blocks, where a block consists of a fixed number of bits that
depends on the symmetric key cryptosystem.

The best-known symmetric key cryptosystem is the Data Encryption Standard (DES),
introduced in 1977, with key size 56 bits and block size 64 bits. Other examples of
symmetric key cryptosystems are:
• Two Key Triple DES (key size 112, block size 64);
• IDEA (key size 128, block size 64);
• RC5 (variable key and block sizes);
• The forthcoming Advanced Encryption Standard (AES), with key sizes of 128, 192,

or 256 bits and block size 128.

5

Wassenaar Arrangement. The maximum symmetric key size allowed by the Wassenaar
Arrangement is 56 bits for ‘niche market’ applications and 64 bits for ‘mass market’.

Attacks. Despite many years of research, no method has been published that breaks a
DES-encrypted message substantially faster than exhaustive key search, i.e., trying all 256

different keys. The expected number of trials of exhaustive key search is 255.

Software data points. Nowadays the DES is not considered to be sufficiently secure. In
1997 a DES key was successfully retrieved after an Internet search of approximately 4
months (cf. www.rsa.com/des). The expected computing power required for such a
software exhaustive key search is underestimated as 0.5 MMY (cf. (1.3)). This estimate is
based on the Pentium based figures that a single DES block encryption with a fixed key
requires 360 Pentium clock cycles (cf. [7]) or 500 Pentium clock cycles with a variable
key (cf. [2]). Furthermore, our estimate lies between two DEC VAX 11/780 estimates
that can be found in [8] and [22]. It follows that our Mips Years convention is sufficiently
accurate.

Half a million Mips Years is roughly 13500 months on a PC. This is equivalent to
4 months on 3500 PCs, because an exhaustive key search can be evenly divided over any
number of processors. For a proper security analysis one therefore has to evaluate and
keep track of the total computational power of the Internet.

Special-purpose hardware data points. At the cost of a one-time investment a hardware
attack is substantially faster than a software attack. In 1977 a $20 million parallel DES
key searching machine was proposed with an expected search time of 12 hours (cf. [10]),
in 1980 corrected to $50 million and 2 days (cf. [9]). In a 1993 design by M. Wiener (cf.
[29]) the cost and expected time were down to one million dollar and 3.5 hours,
respectively. In 1998 a $130,000 machine was built with an expected search time of 112
hours (cf. [14]; see also [12]).

Effectiveness of guessing. There is always the possibility that someone may find a key
simply by guessing it. For reasonable key sizes the probability that this happens is small:
even for a 50-bit key there is a total probability of one in a million that it is found if one
billion people each make a different guess. With the same effort, the probability of
success halves for each additional key bit: for a 60-bit key it becomes only one in a
billion. Note that exhaustive key search is nothing more than systematic guessing.

Incomplete attacks. The success probability of exhaustive key search is proportional to
the fraction of the key space searched; i.e., for any x, 0 ≤ x ≤ 1, the chance is x that the
key is found after searching a fraction x of the key space.

Cryptanalytic progress. We assume no major changes, i.e., that future symmetric key
cryptosystem designs do not allow faster attacks than exhaustive key search. Also, we
assume that a design that turns out to allow a faster attack will no longer be used. Below
we assume the existence of a generic symmetric key cryptosystem of arbitrary key size
that is about as fast as the DES and for which exhaustive key search is the best attack.

6

Thus, for a b-bit key a successful attack can be expected to require on the order of 2b−1

invocations of the underlying function.

2.3. Asymmetric key cryptosystems
In asymmetric key cryptosystems the receiver R has a private key (which R keeps secret)
and a corresponding public key that anyone, including S, has access to. The sender S uses
R’s public key to encrypt information intended for R, and R uses its private key to
decrypt the encrypted message. If the private key can be derived from the public key,
then the system can be broken.

What the private and public keys consist of, and how hard it is to break the
system, depends on the type of asymmetric key cryptosystem. For cryptanalytic and
historic reasons we distinguish the following three types:
1. Classical asymmetric systems;
2. Subgroup discrete logarithm systems;
3. Elliptic curve systems.

2.3.1. Classical asymmetric systems
These refer to RSA, due to Rivest, Shamir, and Adleman, and traditional discrete
logarithm systems, such as the Diffie-Hellman scheme and ElGamal systems.

RSA description. In RSA the public key contains a large non-prime number, the so-called
RSA modulus. It is chosen as the product of two large primes. If these primes can be
found then the private key can be found, thereby breaking the system. Thus, the security
of RSA is based on the difficulty of the integer factorization problem. The size of an RSA
key refers to the bit-length of the RSA modulus. This should not be confused with the
actual number of bits required to store an RSA public key, which is usually slightly more.

TDL description. In a traditional discrete logarithm (TDL) system the public key consists
of a finite field Fp of size p, a generator g of the multiplicative group (Fp)

* of Fp, and an
element y of (Fp)

* that is not equal to 1. We assume that the field size p is such that p−1
has a prime factor of roughly the same order of magnitude as p. The private key is the
smallest positive integer m such that gm = y. This m is referred to as the discrete logarithm
of y with respect to g. The private key m is at least 1 and at most p−2. If m can be found,
the system can be broken. Thus, the security of TDL systems is based on the difficulty of
computing discrete logarithms in the multiplicative group of a finite field. The size of a
TDL key refers to the bit-length of the field size p. The actual number of bits required to
store a TDL public key is larger, since the public key contains g and y as well.

Wassenaar Arrangement. Both the maximal RSA modulus size and the maximal field
size allowed by the Wassenaar Arrangement are 512 bits, i.e., RSA moduli and p as
above should be less than 2512.

Attacks. Factoring an RSA-modulus n by exhaustive search amounts to trying all primes

up to n . Finding a discrete logarithm by exhaustive search requires on the order of p
operations in Fp. Thus, if exhaustive search were the best attack on these systems, then
112-bit RSA moduli or 56-bit p’s would give security comparable to the DES. However,

7

there are much more efficient attacks than exhaustive search and much larger keys are
required. Surprisingly, the methods to attack these two entirely different problems are
similar, and for this reason we treat RSA and TDL systems as the same category.

The fastest factoring algorithm published today is the Number Field Sieve,
invented in 1988 by John Pollard. Originally it could be used only to factor numbers of a
special form, such as the ninth Fermat number 2512+1 (factored in 1990). This original
version is currently referred to as the Special Number Field Sieve (SNFS) as opposed to
the General Number Field Sieve (NFS), which can handle numbers of arbitrary form,
including RSA moduli. On heuristic grounds NFS can be expected to require time
proportional to

3/23/1))ln(ln()ln())1(o9229.1(e]L[nnn ∗∗+=
to factor an RSA modulus n, where the o(1) term goes to zero as n goes to infinity. This
run time is called subexponential in n because as n goes to infinity it is less than nc for

any c > 0. The storage requirements of the NFS are proportional to]L[n . The expected

run time of the SNFS follows by replacing the 1.9229 in L[n] by 1.5262; thus, the SNFS
is much faster than the NFS, but it cannot be used to attack RSA moduli. If p is a prime
number then a discrete logarithm variation of the NFS (DLNFS) finds a discrete
logarithm in Fp in expected time proportional to L[p].

These run time estimates cannot be used directly to estimate the number of
operations required to factor a certain n or to compute discrete logarithms in a certain Fp.
For instance, for n and p of about the same size and in our current range of interest, L[n]
and L[p] are approximately equal if the o(1)’s are omitted, but the discrete logarithm
problem in Fp is considerably more difficult than factoring n. As shown by extensive
experiments the estimates can be used, however, for limited range extrapolation. If one
knows, by experimentation, that factoring an RSA modulus n using NFS takes time t,
then factoring some other RSA modulus m > n will take time close to t∗ L[m]/L[n]
(omitting the o(1)’s), if the sizes of n and m do not differ by too much. If, however, m is
much bigger than n, then the effect of the o(1) going to zero can no longer be ignored,
and t∗ L[m]/L[n] will be an overestimate of the time to factor m (cf. [26]). The same run
time extrapolation method applies to the DLNFS.

NFS background. For a better appreciation of the security offered by classical
asymmetric systems when comparing them to other asymmetric systems, we describe a
few more details of the NFS. It consists of two major steps, a sieving step and a matrix
step, which in theory both take an equal amount of computing time. For numbers in our
current range of interest, however, the matrix step takes only a fraction of the computing
time of the sieving step. The sieving step can be evenly distributed over any number of
processors, with hardly any need for communication, resulting in a linear speedup. The
computing power required for the sieving step of large scale factorizations can in
principle quite easily be obtained on any loosely coupled network of computers such as
the Internet. The matrix step on the other hand does not allow such a straightforward
parallelization.

The situation is worse for the DLNFS. Although, as in the NFS, the DLNFS
sieving and matrix steps are in theory equally hard, the DLNFS matrix step is several
orders of magnitude more time- and memory-consuming than the NFS matrix step.

8

Currently the matrix step is considered to be the major bottleneck obstructing
substantially larger factorizations or even mildly interesting discrete logarithm
computations. Efforts are underway to implement it on a fast and high-bandwidth
network of PCs. Even though the effectiveness of that approach is still uncertain, early
experiments look encouraging (cf. [17]) and there is no reason to believe that it will not
be successful.

Software data points. The largest published factorization using the NFS is that of the 512-
bit number RSA155 which is an RSA modulus of 155 decimal digits, in August of 1999
(cf. [6]). This factoring effort was estimated to cost at most 20 years on a PC with at least
64Mbytes of memory (or a single day on 7500 PCs). This time was spent almost entirely
on the sieving step. It is less than 104 Mips Years and corresponds to fewer than 3∗ 1017

operations, whereas L[10155] = 2∗ 1019 (omitting the o(1)). This shows that L[n]
overestimates the number of operations to be carried out for the factorization of n. The
run time given here is the actual run time of the RSA155 factoring effort and should not
be confused with the estimates given in [27] which appeared around the same time and
which are 100 times too high (cf. [19]). The largest number factored using the SNFS is
the 211-digit (and 698-bit) number (10211−1)/9, in April of 1999, in slightly more than
2000 Mips Years. These run times are only a fraction of the cost of a software DES key
search, but the amount of memory needed by the NFS is several orders of magnitude
larger.

Practical experience with the DLNFS is still limited. It is generally accepted that,
for any b in the current range of interest, factoring b-bit integers takes about the same
amount of time as computing discrete logarithms in (b−x)-bit fields, where x is a small
constant around 20. For b going to infinity there is no distinction between the hardness of
b-bit factoring and b-bit discrete logarithms. Below we do not present separate key size
suggestions for TDL systems and we recommend using the RSA key size suggestions for
TDL systems as well.

Special-purpose hardware data points. Special-purpose hardware devices are
occasionally proposed for the most time consuming step of factoring algorithms such as
the sieving step of the NFS, but no useful data points have been published. Recently Adi
Shamir proposed the TWINKLE opto-electronic sieving device (cf. [23,16]). This device,
if feasible at all, does not affect the asymptotic run time of the NFS, nor does it affect the
matrix step. Due to the complexity of the underlying factorization algorithms and the
corresponding hardware design it is for any special-purpose hardware factoring device
difficult to achieve parallelization at a reasonable cost and at a scale comparable to
hardware attacks on the DES, but it may not be impossible. Also, by the time a special-
purpose design could be operational it is conceivable that it is no longer competitive due
to new algorithmic insights and faster general purpose processors. Given the current state
of the art we consider it to be unlikely that special-purpose hardware will have a
noticeable impact on the security of RSA moduli. But we find it imprudent to ignore the
possibility altogether, and warn against too strong reliance on the belief that special-
purpose attacks on RSA are impossible. To illustrate this, the quadratic sieve factoring
method was implemented successfully on a Single-Instruction-Multiple-Data architecture

9

(cf. [11]). A SIMD machine is by no means special-purpose hardware, but it could be
relatively cheap compared to ordinary PCs.

Effectiveness of guessing. Obviously, key sizes for classical asymmetric systems have to
be larger than 512 to obtain any security at all (where 512 is the size of the ‘broken’ RSA
modulus RSA155). It may safely be assumed that breaking the system by guesswork is
out of the question: it would require at least 254 correctly guessed bits for RSA or 512
bits for TDL. So, from this point of view, classical asymmetric systems seem to be more
secure than symmetric key cryptosystems. For RSA there is more to this story, as shown
below.

Incomplete attacks. Both the NFS and the DLNFS are effective only if run to completion.
There is no chance that any results will be obtained early. RSA, however, can be attacked
also by the Elliptic Curve Method (ECM). After a relatively small amount of work this
method produces a factor with substantially higher probability than mere guesswork. To
give an example, if one billion people were to attack a 512-bit RSA modulus, each by
running the ECM for just one hour on their PC, then the probability that one of them
would factor the modulus is more than 10%. For a 768-bit RSA modulus the probability
of success of the same computational effort is about one in a million. Admittedly, this is a
very low success probability for a tremendous effort – but the success probability is
orders of magnitude larger than guessing, while the amount of work is of the same order
of magnitude. No discrete logarithm equivalent of the ECM has been published. The
details of our ECM run time predictions are beyond the scope of this article. See
also (5.9).

Cryptanalytic progress. Classical asymmetric systems are the prime example of systems
for which the effectiveness of cryptanalysis is steadily improving. The current state of the
art of factoring (and discrete logarithm) algorithms should not be interpreted as the
culmination of many years of research but is just a snapshot of work in progress. It may
be due to the relative complexity of the methods used that so many more or less
independent improvements and refinements have been made and – without any doubt –
will be made. We illustrate this point with a list of some of the developments since the
early seventies, each of which had a substantial effect on the difficulty of factoring or
computing discrete logarithms: continued fraction method, linear sieve, quadratic sieve,
multiple polynomial variation, Gaussian integers, loosely coupled parallelization,
multiple large primes, special number field sieve, structured Gaussian elimination,
number field sieve, singular integers, lattice sieving, blocked Lanczos or conjugate
gradient, and sieving-based polynomial selection for NFS. We assume that this trend of
continuous algorithmic developments will continue in the years to come.

It has never been proved that breaking RSA is equivalent to factoring the RSA
modulus. Indeed, for RSA there is evidence that the equivalence does not hold if the so-
called public exponent (another part of the RSA public key) is small. We therefore
explicitly assume that breaking RSA is equivalent to factoring the RSA modulus. In
particular, we assume that the public exponent for RSA is sufficiently large. Furthermore
we restrict ourselves to TDL based protocols for which attacks are provably equivalent to

10

either computing discrete logarithms or solving the Diffie-Hellman problem. There is
strong evidence that the latter problem is equivalent to computing discrete logarithms

2.3.2. Subgroup discrete logarithm systems
Description. Subgroup discrete logarithm (SDL) systems are like traditional discrete
logarithm systems, except that g generates a relatively small, but sufficiently large,
subgroup of the multiplicative group (Fp)

∗ , an idea due to Schnorr. The size of the
subgroup is prime and is indicated by q. The private key m is at least 1 and at most q−1.
The security of SDL is based on the difficulty of computing discrete logarithms in a
subgroup of the multiplicative group of a finite field. These can be computed if discrete
logarithms in the full multiplicative group can be computed. Therefore, the security of an
SDL system relies on the sizes of both q and p. Nevertheless, the size of an SDL key
simply refers to the bit-length of the subgroup size q, where the field size p is given by
the context. The actual number of bits required to store an SDL public key is substantially
larger than the SDL key size q, since the public key contains p, g and y as well.

Wassenaar Arrangement. The maximum SDL field size allowed by the Wassenaar
Arrangement is 512 bits – there is no maximum allowed key size. A popular subgroup
size is 160 bits. That choice is used in the US Digital Signature Algorithm, with field
sizes varying from 512 to 1024 bits.

Attacks. Methods that can be used to attack TDL systems also can be used to attack SDL
systems. The field size p should therefore satisfy the same security requirements as in
TDL systems. But the subgroup discrete logarithm problem can also be attacked directly
by Pollard’s rho method, which dates from 1978, and by Shanks’ even older baby-step-
giant-step method. These methods can be applied to any group, as long as the group
elements allow a unique representation and the group law can be applied efficiently –
unlike the DLNFS it does not rely on any special properties that group element
representations may have. The expected run time of Pollard’s rho method is exponential

in q, namely q25.1 group operations, i.e., multiplications in Fp. Its storage requirements

are very small. Shanks’ method needs about the same number of operations but needs

storage for about q group elements. Pollard’s rho method can easily be parallelized

over any number of processors, with very limited communication, resulting in a linear
speedup (cf. [28]). This is another illustration of the power of parallelization and another
reason to keep track of the computational power of the Internet. Furthermore, there is no
post-processing involved in Pollard’s rho (unlike the (DL)NFS, where after completion of
the sieving step the cumbersome matrix step has to be carried out), although for the
parallelized version substantial amounts of storage space should be available at a central
location.

Data points. We have not been able to find any useful data about the effectiveness of the
parallelized Pollard rho attack on SDL systems. Our figures below are based on an
adaptation of data points for elliptic curve systems, which is described in detail in (4.1).

11

Effectiveness of guessing. As long as SDL keys are not shorter than the 112 bits
(permitted by the Wassenaar Arrangement for EC systems, see below), guessing the
private key requires guessing at least 112 bits which may safely be assumed to be
infeasible.

Incomplete attacks. The success probability of Pollard’s rho method is, roughly speaking,
proportional to the square of the fraction of the work performed, i.e., for any x, 0 ≤ x ≤ 1,

the chance is x2 that the key is found after performing a fraction x of the expected q25.1

group operations. So, doing ten percent of the work yields a one percent success rate.

Cryptanalytic progress. Since the invention of Pollard’s rho method in 1978 no new
results have been obtained that threaten SDL systems, with the exception of the efficient
parallelization of Pollard rho in 1996. The only reasonable extrapolation of this rate of
algorithmic progress is to assume that no substantial progress will be made. Progress
would almost necessarily imply an entirely new approach and may instantaneously wipe
out all practical SDL systems. The results in [20, 25] that, in a certain generic model of
computation, Pollard’s rho is essentially the best one can do may be comforting in this
context. It should be kept in mind, however, that the generic model does not apply to any
practical situation that we are aware of, and that the possibility of a subexponential attack
against SDL systems cannot be ruled out.

2.3.3. Elliptic curve systems
Description. Elliptic curve (EC) systems are like SDL systems, except that g generates a
subgroup of the group of points on an elliptic curve E over a finite field Fp, an idea
independently due to Koblitz and Miller. The size q of the subgroup generated by g is
prime and the private key m is in the range [1,q−1]. The security of EC systems is based
on the difficulty of computing discrete logarithms in a subgroup of the group of points on
an elliptic curve over a finite field. These can be computed if discrete logarithms in the
full group of points on an elliptic curve over a finite field can be computed. This problem
is known as the ECDL problem. No better method to solve the ECDL problem is known
than by solving the problem in all cyclic subgroups and by combining the results. The
difficulty of the ECDL problem therefore depends on the size of the largest prime divisor
of the order of the group of points of the curve (which is close to p). For that reason, p, E,
and q are usually chosen such that the sizes of p and q are close. Thus, the security of EC
systems relies on the size of q, and the size of an EC key refers to the bit-length of the
subgroup size q. The actual number of bits required to store an EC public key may be
substantially larger than the EC key size q, since the public key contains p, E, g, and y as
well. A description of the group of points on an elliptic curve over a finite field and how
such points are represented or operated upon is beyond the scope of this article. Neither
do we discuss how appropriate elliptic curves and finite fields can or should be selected.

Wassenaar Arrangement. The maximum EC key size allowed by the Wassenaar
Arrangement is 112 bits, with unspecified field size. For prime fields a popular size is
160 bits both for the field size and the subgroup size. For non-prime fields a popular
choice is p = 2163 with a 161-bit q.

12

Attacks. A DLNFS equivalent or other subexponential method to attack EC systems has
never been published. The most efficient method published to attack EC systems is

Pollard’s parallelizable rho method, with an expected run time of q88.0 group

operations. This run time is exponential in q. If field inversions are properly handled, the
average number of field multiplications per group operation is approximately 12.

Software data points. Because p and q are assumed to be of the same order of magnitude
the cost of the group operation is proportional to (log2(q))2. Data about the effectiveness
of an attack using Pollard’s rho method can be found on www.certicom.com/chal. From
the estimates given there we derive that a 109-bit EC system with p = 2109 should take
about 18,000 years on a PC (or, equivalently, one year on 18,000 PCs) which is about 8
MMY. This computation is feasible on a large network of computers. It also follows from
www.certicom.com/chal that an attack on a 109-bit EC system with a prime p of about
109 bits should take about 2.2 MMY. This is an underestimate because it is based on
primes of a special form and thus overly optimistic for general primes (cf. [13]).
Nevertheless, it is used as the basis for extrapolations to estimate the effort required for
software attacks on larger EC systems over prime fields (cf. (1.3)).

Special-purpose hardware data points. In 1996 an attack against a 120-bit EC system
with p = 2155 was sketched (and published 3 years later, cf. [28]) based on a special-
purpose hardware design that achieves a 25 million fold parallelism, i.e., 330,000 special-
purpose processor chips each running 75 independent Pollard rho processes. Building this
machine would cost $10 million and its run time would be about 32 days. The designers
claim that an attacker can do better by using current silicon technology and that further
optimization may be obtained from pipelining. On the other hand, on www.certicom.com
it is mentioned that 131-bit EC systems ‘are expected to be infeasible against realistic
software and hardware attacks’, where 131-bit systems are about 54 times harder to break
than 120-bit systems. We make no attempt to reconcile these two possibly contradictory
evaluations. The pipelined design is further considered in (3.6).

Effectiveness of guessing. As long as EC keys are not shorter than the 112 bits permitted
by the Wassenaar Arrangement, guessing the private key requires guessing at least 112
bits which may safely be assumed to be infeasible.

Incomplete attacks. As with Pollard’s rho attack against SDL systems, the chance is x2

that the key is found after performing a fraction x of the expected q88.0 group

operations.

Cryptanalytic progress. The remarks made above on SDL systems apply here as well. It
is therefore not unreasonable to base our figures below on the assumption that there will
be no substantial progress in the years to come. For EC systems this is not something we
feel comfortable with, because EC related cryptanalytic results are obtained quite
regularly. So far, most of these results affected only special cases, e.g. curves for which
the order of the group of points has special properties. For the non-specialized user this is
hardly comforting: EC systems are relatively complicated and designers often apply
special cases to avoid nasty implementation problems.

13

Our figures below are therefore based on the explicit assumption that curves are
picked at random, i.e., that special cases are not used, and that only curves over prime
fields are used. Even then, it is not hard to find researchers who find that EC systems
have not been around long enough to fully trust them and that the rich mathematical
structure of elliptic curves may still have some surprises in store. Others argue that the
ECDL problem has been studied extensively, and that the lack of progress affecting well-
chosen EC systems indicates that they are sufficiently secure. We do not want to take a
position in this argument and we simply suggest two key sizes for EC systems: one based
on ‘no cryptanalytic progress’ and one based on ‘cryptanalytic progress at the same rate
as for RSA and TDL systems’, the latter despite our fear or conviction that any new
cryptanalytic insight against EC systems, such as a subexponential method, may prove to
be fatal. The reader may then interpolate between the two types of extrapolations
according to her own taste.

2.4. Cryptographic hash functions
Description. A cryptographic hash function is a function that maps an arbitrary length
message to a fixed length ‘hash’ of the message, satisfying various properties that are
beyond the scope of this article. The size of the hash function is the length in bits of the
resulting hash.

Examples of cryptographic hash function are MD4, MD5 (both of size 128),
SHA-1, and RIPEMD-160 (both of size 160).

Attacks. Cryptographic hash functions can be attacked – we do not describe what a
successful attack is exactly – by the so-called birthday paradox attack. The number of
hash function applications required by a successful attack is expected to be proportional
to 2x/2, where x is the size of the hash function. We assume that cryptographic hash
functions have to be “any collision-resistant”. For hash functions that have to be only
“target collision-resistant” the sizes may be halved assuming the hash function is properly
used.

Software data points. In [4] 241, 345, 837, and 1016 pentium cycles are reported for
MD4, MD5, SHA-1, and RIPEMD-160, respectively. This compares to 360 to 500 cycles
for DES depending on fixed or variable keys (cf. [2,7]). Thus, the software speed of a
hash function application as used by a birthday paradox attack is comparable to the
software speed of a single DES block encryption.

Special-purpose hardware data points. Special-purpose hardware has been designed for
several hash functions. We may assume that their speed is comparable to the speed of
special-purpose exhaustive key search hardware.

Cryptanalytic progress. We assume the existence of a generic cryptographic hash
function of speed comparable to the existing functions mentioned above for which the
birthday paradox attack is the best attack. If a proposed design allows a faster attack, we
assume that it will no longer be used. It follows that an exhaustive key search attack on
our generic symmetric key cryptosystem of key size b can be expected to take about the
same time as a birthday paradox attack on our generic cryptographic hash function of

14

size 2b. Thus, a lower bound for the size of cryptographic hash functions follows by
doubling the lower bound for the size of symmetric key cryptosystems. Because of this
simple ‘rule of thumb’, sizes of cryptographic hash functions are not discussed in the
sequel. If speeds differ, adjust accordingly.

3. The model

3.1. Key points
The choice of cryptographic key sizes depends primarily on the following four points:

I. Life span: the expected time the information needs to be protected.
II. Security margin: an acceptable degree of infeasibility of a successful attack.
III. Computing environment: the expected change in computational resources

available to attackers.
IV. Cryptanalysis: the expected developments in cryptanalysis.

Efficiency and storage considerations may also influence the choice of key sizes, but
since they are not directly security-related they are not discussed here.

3.2. Life span
In the tables and figures in the next section key sizes are suggested for the cryptosystems
discussed in section 2, depending on the expected life span of the cryptographic
application. It is the user’s responsibility to decide until what year the protection should
be effective, or how the expected life span corresponds to popular security measures such
as ‘short-term’, ‘medium-term’, or ‘long-term’ security.

3.3. Security margin
A cryptosystem can be assumed to be secure only if it is considered to be sufficiently
infeasible to mount a successful attack. Unfortunately, it is hard to quantify what
precisely is meant by ‘sufficiently infeasible’. One could, for instance, decide that a key
size for a certain cryptosystem is secure for current applications if breaking it would be,
say, 106 times harder than the largest key size that can currently be broken for that
cryptosystem. There are several problems with this approach. First of all, the choice 106

is rather arbitrary. Secondly, there is no reason to believe that the ‘largest key broken so
far’ accurately represents the best that can currently be done. In the third place, for some
of the cryptographic primitives considered here data may not be available (TDL, SDL),
or they may be outdated, thereby ruling out uniform application of this approach. We opt
for a different approach.

Hypothesis I. As the basis for our extrapolations we assume that the DES was at least
sufficiently secure for commercial applications until 1982 because it was introduced in
1977 and stipulated to be reviewed every five years. We therefore hypothesize that in
1982 a computational effort of 0.5 MMY was believed to provide an adequate security
margin for commercial DES applications against software attacks (cf. (2.2)). As far as
hardware attacks are concerned, we assume that the “$50 million, 2 days” DES key

15

searching machine (cf. (2.2)) from 1980 was not considered to be a serious threat for
commercial applications of the DES at least until 1982. We stress ‘commercial
applications’ because, even for 1980 budgets, $50 million and 2 days are by no means an
insurmountable obstacle for certain organizations. Our hypothesis is further discussed
below (cf. (3.8)). We note that quite different assumptions allow an approach similar to
ours, though the resulting guidelines will be different. This is discussed in (4.4).

3.4. Computing environment
Hypothesis II. To estimate how the computing power available to attackers may change
over time we use Moore’s law. Moore’s law states that the density of components per
integrated circuit doubles every 18 months. A widely accepted interpretation of this law
is that the computing power per chip doubles every 18 months. There is some skepticism
whether this law will, or even can, hold much longer because new technologies will
eventually have to be developed to keep up with it. Therefore we hypothesize a slight
variation of Moore’s law that is less technology dependent and that so far seems to be
sufficiently accurate: every 18 months the amount of computing power and random
access memory one gets for a dollar doubles. It follows that for the same cost one gets a
factor of 210∗ 12/18 ≈ 100 more computing power and fast memory every 10 years, either in
software on multipurpose chips (PCs) or using special-purpose hardware.

To illustrate this, it is not unreasonable to assume that a cheaper and slower version of the
1980 “$50 million, 2 days” DES key searching machine would be a “one million dollar,
100 days” machine, i.e., 50 times less hardware and therefore 50 times slower. According
to our version of Moore’s law the one million dollar machine may be expected to be 28.7

times faster in 1993, since there are 12∗ 13 = 18∗ 8.66 months between 1980 and 1993.
Since 28.7≈ 406 the 1993 version would need about 100/406 days, i.e., about 6 hours,
which is indeed close to the 3.5 hours in Wiener’s 1993 one million dollar design. On the
other hand, further extrapolation suggests that in 1998 a one million dollar machine may
be expected to take 0.6 hours, or that a $130,000 machine would take 4.6 hours, i.e.,
about 24 times faster than the machine that was actually built in 1998 (cf. [14]).
According to [15] this anomaly is due to the fact that building the $130,000 machine was,
relatively speaking, a small scale enterprise where every doubling of the budget would
have quadrupled the performance. Obviously this non-linear improvement applies only as
long as the device is relatively small.

Hypothesis III. Our version of Moore’s law implies that we have to consider how budgets
may change over time. The US Gross National Product shows a trend of doubling every
ten years: $1630 billion in 1975 measured in 1975 dollars, $4180 billion in 1985
measured in 1985 dollars, and $7269 billion in 1995 in 1995 $’s. This leads to the
hypothesis that the budgets of organizations – including the ones breaking cryptographic
keys – doubles every ten years.

Combination of Hypotheses I, II, and III. If in 1982 an amount of computing power of 0.5
MMY is assumed to be infeasible to invest in an attack on a commercial cryptographic
application, then 100 (≈ 2∗ 100∗ 0.5) MMY is infeasible in 1992. Furthermore, 2∗ 104 (≈
200∗ 100) MMY is infeasible in 2002, and 4∗ 106 MMY is infeasible in 2012. These

16

figures agree with Odlyzko’s estimates based on computing power that may be available
on the Internet (cf. [22]). Our estimates were, however, obtained in an entirely different
fashion.

3.5. Cryptanalysis
Hypothesis IV. As indicated in the Cryptanalytic progress paragraphs in Section 2 it is
impossible to say what cryptanalytic developments will take place, or have already taken
place surreptitiously. We find it reasonable to assume that the pace of (published) future
cryptanalytic findings and their impact are not going to vary dramatically compared to
what we have seen from 1970 until 1999. For classical asymmetric systems the effect of
cryptanalytic developments illustrated in (2.3) is similar to Moore’s law, i.e., 18 months
from now we may expect that attacking the same classical asymmetric system costs half
the computational effort it costs today. For all other systems we assume that no
substantial cryptanalytic developments will take place, with the exception of elliptic
curve systems for which we use two types of extrapolations: no progress and progress à
la Moore.

3.6. Software versus special-purpose hardware attacks
The proposed key sizes in the next section are obtained by combining Hypotheses I-IV
with the software based Mips Years data points from Section 2. This implies that all
extrapolations are based on ‘software only’ attacks and result in computationally
equivalent key sizes (cf. (1.4)). One may object that this does not take special-purpose
hardware attacks into account. Here we discuss to what extent this is a reasonable
decision, and how our results should be interpreted to take special-purpose hardware
attacks into account as well.

Symmetric key systems. In 1980 the DES could either be broken at the cost of 0.5 MMY,
or using a “$50 million, 2 days” key searching machine. Above we have shown that this
is consistent with our version of Moore’s law and Wiener’s 1993 design. Thus, it seems
reasonable to assume that a DES attack of one MMY is comparable to an attack by [$10
million, 20 days, 1980]-hardware or, using Moore’s law, by [$200/210.66 million =
$125,000, 1 day, 1996]-hardware. It also follows that the 1982 relation between software
and special-purpose hardware attacks on the DES has not changed. In particular, if one
assumes that the DES was sufficiently resistant against a special-purpose hardware attack
in 1982, the same holds for the symmetric key sizes suggested for the future, even though
they are based on extrapolations of ‘software only’ attacks. We note that our estimates
and the resulting cost of special hardware designs for exhaustive key search are
consistent with the estimates given in [3] and [5].

EC systems. The cost of a software attack on a 109-bit EC system with p = 2109 was
estimated as 8 MMY, so that attacking a 120-bit EC system with p = 2155 should take
about (2(120−109)/2)∗ (155/109)2 ≈ 91 times as many Mips Years, i.e., about 730 MMY. The
[$10 million, 32 days, 1996]-hardware design attacking a 120-bit EC system with p = 2155

(cf. (2.3.3)) should thus be more or less comparable to 730 MMY. However, the
designers of the hardware device remark that their design was based on 1992 (or even
older) technology which can be improved by using 1996 technology. So, by Moore’s law,

17

the ‘upgraded’ [$10 million, 32 days, 1996]-hardware design could be more or less
comparable with 730∗ 6.35 ≈ 4600 MMY. It follows that an EC attack of one MMY is
comparable to [$70,000, 1 day, 1996]-hardware.

We find that one MMY is equivalent to [$70,000 to $125,000, 1 day, 1996]-
hardware depending on an EC or a DES attack. Because of the consistency of these
conversions it is tempting to suggest that one MMY is approximately equivalent to [$105,
1 day, 1996]-hardware; more generally, that one MMY would be equivalent to
[$105/22∗ (y−1996)/3, 1 day, y]-hardware in year y. This conversion formula would allow us
to go back and forth between software and special-purpose hardware attacks, and make
our entire model applicable to hardware attacks as well.

In our opinion the consistency between the two conversions is a mere
coincidence, without much practical merit. In the first place, the estimate holds only for
relatively simple minded DES or EC cracking devices for elliptic curves over non-prime
fields (i.e., those with p = 2k), not for elliptic curves over prime fields and certainly not
for full-blown PCs. For prime fields the hardware would be considerably slower, whereas
in software EC systems over prime fields can be attacked faster than those over non-
prime fields (cf. (2.3.3)). Thus, for special-purpose hardware attacks on EC systems over
prime fields the above consistency no longer holds. In the second place, according to
[30], the pipelined version of the EC-attacking special-purpose hardware referred to
above would be about 7 times faster, which means that also for special-purpose hardware
attacks on EC systems over non-prime fields the consistency between DES and EC
attacks is lost. Also according to [30], the prime field version of the pipelined device
would be about 24 to 25 times slower than the non-prime field version. It should be noted
that the details of the pipelined device have never been published (and most likely will
never be published, cf. [31]).

As mentioned in (2.3.3), we consider only EC systems that use randomly selected
curves over prime fields. Therefore we may base our recommendations on ‘software
only’ attacks, if we use the software based data point that a 109-bit EC system can be
attacked in 2.2 MMY (cf. (2.3.3)). This can be seen as follows. The 2.2 MMY
underestimates the true cost, and is lower than the 8 MMY cost to attack the non-prime
field of equivalent size. The latter can be done using non-pipelined special-purpose
hardware in a way that is more or less consistent with our DES infeasibility assumption,
as argued above. For special-purpose hardware a non-prime field can be attacked faster
than a prime field of equivalent size, so if we use the naive DES-consistent hardware
conversion, then the hypothetical special-purpose hardware that follows from
extrapolation of the 2.2 MMY figure to larger prime fields substantially underestimates
the true hardware cost. That means that the resulting key sizes are going to be too large,
which is acceptable since we are deriving lower bounds for key sizes (cf. (1.3)). The
more realistic prime field equivalent of the non-DES-consistent pipelined device for non-
prime fields is, based on the figures given above, at least 24∗ 8/(2.2∗ 7) > 8 times slower
than our hypothetical hardware. This implies that the more realistic hardware would lead
to lower key sizes than the hypothetical hardware. Thus, it is acceptable to stick to the
latter (cf. (1.3)). It follows that, if one assumes that the DES was sufficiently resistant
against a special-purpose hardware attack in 1982, the same holds for the EC key sizes
suggested for the future, even though they are based on extrapolations of ‘software only’
attacks.

18

SDL systems. The same holds for SDL systems because our analysis of SDL key sizes is
based on the EC analysis as described below.

Classical asymmetric systems. For classical asymmetric systems we do not consider
special-purpose hardware attacks, as argued in (2.3.1). The issue of software attacks on
classical asymmetric systems versus special-purpose hardware attacks on other
cryptosystems is discussed below.

Equipment cost comparison of software and special-purpose hardware attacks. Our key
size recommendations below are computationally equivalent (cf. (1.4)) and, as argued
above, they all offer security at least equivalent to the 1982 security of DES, both against
software and special-purpose hardware attacks. That does not necessarily imply that the
key sizes for the various cryptosystems are also cost equivalent (cf. (1.4)), because the
equipment costs of the 1982 software and special-purpose hardware attacks on the DES
are not necessarily equal either.

One point of view is that accessing the hardware required for software attacks is,
or ultimately will be, essentially for free. This is supported by all Internet based
cryptosystem attacks so far and other large computational Internet projects such as SETI.
Adoption of this simple-minded rule would make computational and cost equivalence
identical, which is certainly not generally acceptable (cf. [30]). Unfortunately, a precise
equipment cost comparison defies exact analysis, primarily because no precise ‘cost of a
PC’ can be pinpointed, but also because a truly complete analysis has never been carried
out for the pipelined EC attacking design from [30] (cf. [31]). As pointed out in (1.4) this
is one of the reasons that we decided to use computational equivalence as the basis for
our results. Nevertheless, we sketch how an analysis based on cost equivalence could be
carried out.

According to newspaper advertisements fully equipped PCs (cf. (1.2)) can be
bought for prices varying from $0 to $450. The ‘free’ machines support the point of view
that software attacks are for free. Assume that one does not want to deal with the strings
attached to the free machines and that a stripped down PC (i.e., a mother-board plus
communications hardware) can be bought for $100. It follows that [$81 million, 1 day,
1999]-hardware is equivalent to at least one million software Mips Years, disregarding
the possibly much larger quantum discount one should be able to negotiate for an order of
this size. Compared to the above exhaustive key search [$125,000, 1 day, 1996] ≈
[$31,000, 1 day, 1999]-hardware, a software Mips Year is thus about 2500 times more
expensive. Compared to the pipelined [$70,000/7, 1 day, 1996] ≈ [$2500, 1 day, 1999]-
hardware to attack EC systems over non-prime fields, a software Mips Year is more than
3∗ 104 times more expensive, but at most about 2∗ 103 times more expensive than the
prime field version of the pipelined design.

It follows that for our purposes software Mips Years are at most 2500 times more
expensive than Mips Years produced by special-purpose hardware. In (4.6) it is shown
how this factor 2500 can be used to derive equipment cost equivalent key sizes from the
computationally equivalent ones. Note however that the factor 2500 should be taken with
a large grain of salt. Its scientific merit is in our opinion questionable because it is based

19

on a guess for the price of stripped down PCs and the presumed infeasibility of special-
purpose hardware attacks on RSA (cf. (2.3.1) and the pipelined design in [11]).

3.7. Memory considerations
The processors contributing to a parallelized exhaustive key search do not require a
substantial amount of memory. This is also the case for the processors involved in a
parallelized attack using Pollard’s rho method against SDL or EC systems. Although for
parallelized Pollard rho substantial storage space has to be available at a central location,
we assume that storage requirements do not have to be taken into account to estimate
SDL and EC system key sizes.

For parallelized NFS attacks against classical asymmetric systems, however, each
of the contributing processors needs a large amount of random access memory (RAM) of
speed compatible with the processor speed. Until recently memory access times and not
processor speeds determined the effective run times of the NFS sieving step: a twice
faster clock rate would often result in only marginally faster sieving. This is because the
sieving step consists of constant updates of more or less random locations in a large
chunk of memory, and thus does not allow efficient caching. Straightforward
extrapolation of NFS run times to faster processors was therefore impossible.

Surprisingly, newer generations of processors do not seem to suffer from this
drawback, at least not for the type of sieving that was mainly used for the result presented
in [6]. For instance, NFS lattice sieving speed on Pentium processors grows strictly
linearly with the processor speed, with an interesting super-linear speed-up when moving
from Pentium I to Pentium II processors. To illustrate this important point, an average
sieving step operation takes 15.8 seconds on a 133MHz Pentium I, 12.7 seconds on a
166MHz Pentium I, 5.34 seconds on a 300MHz Pentium II, and 3.61 seconds on a 450
MHz Pentium II, where all processors execute the same binary that uses about 48MB of
their about 200MB RAMs (cf. [6]). This may be due to an improvement of the
processors inspired by the bulky and unwieldy operating systems that currently enjoy an
increasing popularity. It may also be a consequence of the relatively compute-intensive
nature of the lattice sieving technique that was used. In any case, there does not seem to
be any reason not to extrapolate NFS run times in the standard fashion.

Combining these observations with the assumption that RAM sizes grow at the
same rate as processor speeds (cf. Hypothesis II), we conclude that the NFS memory
requirements do not explicitly have to be taken into account when extrapolating NFS run
times to future processors and larger RSA moduli or field sizes.

3.8. Remark
We do not expect that everyone agrees with our hypotheses. In particular Hypothesis I is
debatable. Note, however, that we did not assume that the DES was unbreakable in 1977
or 1982. We assumed that it offered enough security for commercial applications, not that
well-funded government agencies were unable to break it back in 1977. In this context it
may be entertaining to mention that Mike Wiener, after presenting his [$1 million, 3.5
hours, 1993]-hardware design at a cryptography conference, was told that he had done a
nice piece of work and he was offered a similar machine at only 85% of the cost – with
the catch that it was 5 years old (cf. [31]). In any case, anyone who feels that our 1982

20

infeasibility assumption is too weak or too strong can still use our approach. In (4.4) it is
explained how this may be done.

Neither do we expect that everyone agrees with Hypothesis II. Some argue that
Moore’s law cannot hold much longer, others (cf. [15]) find that for big machines
Moore’s law is too pessimistic. Hypothesis II thus represents a reasonable compromise.

4. Lower bound estimates for cryptographic key sizes

4.1. Method of computation
For year y we first compute IMY(y), the number of Mips Years considered to be
infeasible for that year, based on Hypotheses I-III:

IMY(y) = 0.5 ∗ 106 ∗ 22(y−1982)/3 ∗ 2(y−1982)/10.

The resulting value is used to derive key sizes that should be sufficiently secure until
year y, for all cryptographic primitives considered in Section 2.

For symmetric key cryptosystems the key size is computed as the smallest integer
that is at least

56 + log2(IMY(y) / (0.5 ∗ 106)) = 23y / 30 − 1463.533.

For classical asymmetric systems we use the asymptotic run time L[n] of the NFS
(omitting the o(1)) combined with the data point that a 512-bit key was broken in 1999 at
the cost of less than 104 Mips Years (cf. (2.3.1)) and Hypothesis IV that cryptanalytic
progress à la Moore is expected. Thus, we determine the smallest size s such that

L[2s] ∗ 104 ≥ L[2512] ∗ 22(y−1999)/3 ∗ IMY(y).

Because the data point used overestimates the cost of factoring a 512-bit key and because
we omit the o(1) the difficulty of breaking classical asymmetric systems with size s keys
is overestimated (cf. (2.3.1)), i.e., the RSA and TDL key sizes should be even larger than
given in Table 1. We did not attempt to correct this, because it may be regarded as a
reasonable compensation for the matrix step of the NFS (cf. (1.3), (2.3.1)). Of all the
computations involved in breaking any of the systems discussed here, it is the only step
that has not been parallelized yet, thereby making application of the NFS cumbersome
compared to exhaustive key search or Pollard’s rho.

For subgroup discrete logarithm systems we use the just determined s as field size
for year y. Because no suitable data points are available, we use the optimistic estimate
that an EC system over a prime field of 109 bits can be broken in 2.2 MMY (cf. (2.3.3))
and that an elliptic curve operation takes on average 9 field multiplications. Combined
with the fact that Pollard’s rho method requires √2 more iterations for SDL than for EC
systems, the expected growth rate of the number of iterations required by Pollard’s rho
method, and the expected growth of the cost of the field operations, we find that the size
of the subgroup size q can be taken as

21

109 + 2 ∗ log2(1092 ∗ IMY(y) ∗ 9 / (s2 ∗ 2 ∗ 2.2 ∗ 106)).

The resulting sizes are too large because the 2.2 MMY estimate is on the low side. This
optimism is to a small extent corrected by the optimistic choice of 9 field multiplications
(where 12 or 13 would be more accurate, cf. [13]). It follows from a straightforward
analysis that the resulting subgroup size is of the required difficulty if a multiplication in
a field of size s takes about s2/69 Pentium clock cycles. According to our own
experiments with reasonably fast but non-optimized software a field multiplication can be
done in s2/24 Pentium clock cycles, so that the resulting subgroup sizes are at most two
bits too large (cf. (1.3)).

For elliptic curve systems we use the same optimistic estimate that a 109-bit
system can be broken in 2.2 MMY combined with the expected growth rate of the
number of group operations required by Pollard’s rho method and the expected growth of
the cost of the group operations, to determine the smallest size t such that

t2 ∗ 2(t−109)/2 ≥ 1092 ∗ IMY(y) / (2.2 ∗ 106).

The resulting t represents the recommended EC key size lower bound if no cryptanalytic
progress is assumed, where it should be noted that t is on the large side because the 2.2
MMY estimate is rather optimistic (cf. (1.3)). An alternative key size that assumes
cryptanalytic progress à la Moore can be determined by taking the smallest u such that

u2 ∗ 2(u−109)/2 ≥ 22(y−1999)/3 ∗ 1092 ∗ IMY(y) / (2.2∗ 106).

4.2. Remarks on the computation of Table 1
1. All estimates may be computed for years before 1999. Some of the resulting data can

be found in Table 1. Strictly speaking this does not make sense for the “EC with
Moore” column, because we already know that for random curves over prime fields
such progress did not occur before 1999. Nevertheless, these data can be found in
Table 1 as well, in italics. It is described in (4.4) in what circumstances these data,
and the other data in italics, may be used.

2. The data in Table 1 do not change significantly if the “512-bit, 104 Mips Years, 1999”
data point is replaced by, for instance, “333-bit, 30 Mips Years, 1988” (the first 100-
digit factorization) or “429-bit, 5000 Mips Years, 1994” (the factorization of the
RSA-Challenge; despite [27] 5000 Mips Years overestimates the time it took to break
the RSA-Challenge). This validates our decision to adopt a Moore-like law for
cryptanalytic progress affecting classical asymmetric systems.

4.3. Using Table 1
Assuming one agrees with our hypotheses, Table 1 can be used as follows. Suppose one
develops a commercial application in which the confidentiality or integrity of the
electronic information has to be guaranteed for 20 years, i.e., until the year 2020.
Looking at the row for the year 2020 in Table 1, one finds that an amount of computing
of 2.9∗ 1014 Mips Years in the year 2020 may be considered to be as infeasible as 0.5∗ 106

22

Mips Years was in 1982. Security computationally equivalent (cf. (1.4)) to the security
offered by the DES in 1982 is obtained by using, in the year 2020:
• Symmetric keys of at least 86 bits, and hash functions of at least 172 bits;
• RSA moduli of at least 1881 bits; the meaning of the ‘1472’ given in the second

entry of same column is explained in 4.6
• Subgroup discrete logarithm systems with subgroups of at least 151 bits with finite

fields of at least 1881 bits.
• Elliptic curve systems over prime fields of at least 161 bits if one is confident that no

cryptanalytic progress will take place, at least 188 bits if one prefers to be more
careful.

If finite fields are used in SDL or EC systems that allow significantly faster arithmetic
operations than suggested by our estimates, the data in Table 1 can still be used: if the
field arithmetic goes x times faster, keys should be roughly 2∗ log2(x) bits larger than
indicated Table 1. As noted above, however, the field arithmetic is already assumed to be
quite fast. Similarly, if one does not agree that the data point used for EC systems
underestimates the actual cost and that we overestimated the cost by a factor x, i.e., that
the 2.2 MMY to attack 109-bit EC systems should be only 2.2/x MMY, add roughly
2∗ log2(x) bits to the suggested EC key sizes.

Table 1
Lower bounds for computationally equivalent key sizes,

assuming cryptanalytic progress à la Moore affecting classical asymmetric systems
Elliptic Curve
Key Size

progress

Year

Symmetric
Key Size

Classical
Asymmetric
Key Size (and
SDL Field
Size)

Subgroup
Discrete
Logarithm
Key Size

no yes

Infeasible
number of
Mips Years

Lower bound
for Hardware
cost in US $ for
a 1 day attack
(cf. (4.6))

Corresponding
number of
years on
450MHz
PentiumII PC

1982 56 417 288 102 105 85 5.00 * 105 3.98 ∗ 107 1.11 * 103

1983 57 440 288 103 107 88 8.51 * 105 4.27 ∗ 107 1.89 * 103

1984 58 463 320 105 108 89 1.45 * 106 4.57 ∗ 107 3.22 * 103

1985 59 488 320 106 110 93 2.46 * 106 4.90 ∗ 107 5.47 * 103

1986 60 513 352 107 111 96 4.19 * 106 5.25 ∗ 107 9.31 * 103

1987 60 539 384 108 113 98 7.13 * 106 5.63 ∗ 107 1.58 * 104

1988 61 566 384 109 114 101 1.21 * 107 6.04 ∗ 107 2.69 * 104

1989 62 594 416 111 116 104 2.06 * 107 6.47 ∗ 107 4.58 * 104

1990 63 622 448 112 117 106 3.51 * 107 6.93 ∗ 107 7.80 * 104

1991 63 652 448 113 119 109 5.97 * 107 7.43 ∗ 107 1.33 * 105

1992 64 682 480 114 120 112 1.02 * 108 7.96 ∗ 107 2.26 * 105

1993 65 713 512 116 121 114 1.73 * 108 8.54 ∗ 107 3.84 * 105

1994 66 744 544 117 123 117 2.94 * 108 9.15 ∗ 107 6.53 * 105

1995 66 777 544 118 124 121 5.00 * 108 9.81 ∗ 107 1.11 * 106

1996 67 810 576 120 126 122 8.51 * 108 1.05 ∗ 108 1.89 * 106

1997 68 844 608 121 127 125 1.45 * 109 1.13 ∗ 108 3.22 * 106

1998 69 879 640 122 129 129 2.46 * 109 1.21 ∗ 108 5.48 * 106

1999 70 915 672 123 130 130 4.19 * 109 1.29 ∗ 108 9.31 * 106

2000 70 952 704 125 132 132 7.13 * 109 1.39 ∗ 108 1.58 * 107

2001 71 990 736 126 133 135 1.21 * 1010 1.49 ∗ 108 2.70 * 107

2002 72 1028 768 127 135 139 2.06 * 1010 1.59 ∗ 108 4.59 * 107

2003 73 1068 800 129 136 140 3.51 * 1010 1.71 ∗ 108 7.80 * 107

2004 73 1108 832 130 138 143 5.98 * 1010 1.83 ∗ 108 1.33 * 108

2005 74 1149 864 131 139 147 1.02 * 1011 1.96 ∗ 108 2.26 * 108

23

2006 75 1191 896 133 141 148 1.73 * 1011 2.10 ∗ 108 3.84 * 108

2007 76 1235 928 134 142 152 2.94 * 1011 2.25 ∗ 108 6.54 * 108

2008 76 1279 960 135 144 155 5.01 * 1011 2.41 ∗ 108 1.11 * 109

2009 77 1323 1024 137 145 157 8.52 * 1011 2.59 ∗ 108 1.89 * 109

2010 78 1369 1056 138 146 160 1.45 * 1012 2.77 ∗ 108 3.22 * 109

2011 79 1416 1088 139 148 163 2.47 * 1012 2.97 ∗ 108 5.48 * 109

2012 80 1464 1120 141 149 165 4.19 * 1012 3.19 ∗ 108 9.32 * 109

2013 80 1513 1184 142 151 168 7.14 * 1012 3.41 ∗ 108 1.59 * 1010

2014 81 1562 1216 143 152 172 1.21 * 1013 3.66 ∗ 108 2.70 * 1010

2015 82 1613 1248 145 154 173 2.07 * 1013 3.92 ∗ 108 4.59 * 1010

2016 83 1664 1312 146 155 177 3.51 * 1013 4.20 ∗ 108 7.81 * 1010

2017 83 1717 1344 147 157 180 5.98 * 1013 4.51 ∗ 108 1.33 * 1011

2018 84 1771 1376 149 158 181 1.02 * 1014 4.83 ∗ 108 2.26 * 1011

2019 85 1825 1440 150 160 185 1.73 * 1014 5.18 ∗ 108 3.85 * 1011

2020 86 1881 1472 151 161 188 2.94 * 1014 5.55 ∗ 108 6.54 * 1011

2021 86 1937 1536 153 163 190 5.01 * 1014 5.94 ∗ 108 1.11 * 1012

2022 87 1995 1568 154 164 193 8.52 * 1014 6.37 ∗ 108 1.89 * 1012

2023 88 2054 1632 156 166 197 1.45 * 1015 6.83 ∗ 108 3.22 * 1012

2024 89 2113 1696 157 167 198 2.47 * 1015 7.32 ∗ 108 5.48 * 1012

2025 89 2174 1728 158 169 202 4.20 * 1015 7.84 ∗ 108 9.33 * 1012

2026 90 2236 1792 160 170 205 7.14 * 1015 8.41 ∗ 108 1.59 * 1013

2027 91 2299 1856 161 172 207 1.21 * 1016 9.01 ∗ 108 2.70 * 1013

2028 92 2362 1888 162 173 210 2.07 * 1016 9.66 ∗ 108 4.59 * 1013

2029 93 2427 1952 164 175 213 3.52 * 1016 1.04 ∗ 109 7.81 * 1013

2030 93 2493 2016 165 176 215 5.98 * 1016 1.11 ∗ 109 1.33 * 1014

2031 94 2560 2080 167 178 218 1.02 * 1017 1.19 ∗ 109 2.26 * 1014

2032 95 2629 2144 168 179 222 1.73 * 1017 1.27 ∗ 109 3.85 * 1014

2033 96 2698 2208 169 181 223 2.95 * 1017 1.37 ∗ 109 6.55 * 1014

2034 96 2768 2272 171 182 227 5.01 * 1017 1.46 ∗ 109 1.11 * 1015

2035 97 2840 2336 172 184 230 8.53 * 1017 1.57 ∗ 109 1.90 * 1015

2036 98 2912 2400 173 185 232 1.45 * 1018 1.68 ∗ 109 3.22 * 1015

2037 99 2986 2464 175 186 235 2.47 * 1018 1.80 ∗ 109 5.49 * 1015

2038 99 3061 2528 176 188 239 4.20 * 1018 1.93 ∗ 109 9.33 * 1015

2039 100 3137 2592 178 189 240 7.14 * 1018 2.07 ∗ 109 1.59 * 1016

2040 101 3214 2656 179 191 244 1.22 * 1019 2.22 ∗ 109 2.70 * 1016

2041 102 3292 2720 180 192 247 2.07 * 1019 2.38 ∗ 109 4.60 * 1016

2042 103 3371 2784 182 194 248 3.52 * 1019 2.55 ∗ 109 7.82 * 1016

2043 103 3451 2880 183 195 252 5.99 * 1019 2.73 ∗ 109 1.33 * 1017

2044 104 3533 2944 185 197 255 1.02 * 1020 2.93 ∗ 109 2.26 * 1017

2045 105 3616 3008 186 198 257 1.73 * 1020 3.14 ∗ 109 3.85 * 1017

2046 106 3700 3072 187 200 260 2.95 * 1020 3.36 ∗ 109 6.55 * 1017

2047 106 3785 3168 189 201 264 5.02 * 1020 3.60 ∗ 109 1.11 * 1018

2048 107 3871 3232 190 203 265 8.53 * 1020 3.86 ∗ 109 1.90 * 1018

2049 108 3959 3328 192 204 269 1.45 * 1021 4.14 ∗ 109 3.23 * 1018

2050 109 4047 3392 193 206 272 2.47 * 1021 4.44 ∗ 109 5.49 * 1018

4.4. Alternative security margin
According to Hypothesis I the DES offered enough security for commercial applications
until the year 1982, but not beyond 1982. For corporations that have used the DES
beyond 1982 or even until the late nineties our infeasibility assumption of 0.5 MMY in

24

1982 may be too strong. For others it may be too weak. Here we explain how to use
Table 1 to look up key sizes for year y, for example y = 2005, if one trusts the DES until
the year 1982 + x, where x is negative if our infeasibility assumption is considered to be
too weak and positive otherwise. So, for example, x = 13 if one trusts the DES until 1995.
• Symmetric keys: take the entry for year y − x, i.e., 2005 – 13 = 1992 in our example.

The resulting symmetric key size suggestion is 64 bits.
• Classical asymmetric keys: take the entry for year y − 23∗ x/43, i.e., 2005 − 23∗ 13/43

≈ 1998 in our example. So 879-bit RSA and TDL keys should be used.
• SDL keys: take the classical asymmetric key size s′ for year y − 23∗ x/43, the SDL

size t for year y − x, and the classical asymmetric key size s for year y − x and use a
subgroup of size t + 4∗ log2(s) − 4∗ log2(s′) over a field of size s′. In our example s′ =
879, t = 114, and s = 682 so that a subgroup of size 114 + 4∗ log2(682) − 4∗ log2(879)
≈ 113 bits should be used with a 879-bit field.

• EC systems without progress: take the ‘without progress’ entry for year y − x, i.e.,
2005 – 13 = 1992 in the example. The resulting EC key size suggestion is 120 bits.

• EC systems with progress à la Moore: take the ‘with progress’ entry for year
y − 23∗ x/43, i.e., 2005 − 23∗ 13/43 ≈ 1998 in our example. The resulting EC key size
suggestion is 129 bits.

The Table 1 entries in italics for years before 1999 may be used in the last application;
the other italics entries may be used if x < 0. The correctness of these methods follows
easily from the formulas given in (4.1).

4.5. Currently computationally equivalent key sizes
Table 1 can also be used, in a way that is very similar to (4.4), to look up key sizes that
may currently (i.e., in the year 1999) be considered to be computationally equivalent.
Given a symmetric key size d, asymmetric key sizes that are currently computationally
equivalent to it can be looked up as follows. First, find the year y in which d occurs in the
symmetric key size column. For classical asymmetric systems look up the classical
asymmetric key size for year y’ = 30∗ d/43 + 1950.8. For SDL systems look up the SDL
key size t for year y, the classical asymmetric key size s’ for year y’, and the classical
asymmetric key size s for year y, then subgroups of size t + 4∗ log2(s) − 4∗ log2(s’) over a
field of size s’ offer security that is currently computationally equivalent, in the year
1999, to symmetric keys of size d. Given a classical asymmetric key size d’, the currently
computationally equivalent symmetric key size can be found by looking up the year y in
which d’ occurs, and by using symmetric key size 43∗ y/30 − 2796.2.

As an example, for a symmetric key of size d = 85 we find that y = 2019 and y’ =
30∗ 85/43 + 1950.8 = 2010.1. Currently computationally equivalent key sizes are: about
1375 bits for classical asymmetric keys, subgroups of size 150 + 2 = 152 over 1375 bits
fields, and EC systems of 160-bits. Similarly, for a classical asymmetric key of size d’ =
1024 we find that y = 2002 and that a currently computationally equivalent symmetric
key size is given by 43∗ 2002/30 − 2796.2 ≈ 74.

4.6. Equipment cost equivalent key sizes
Assuming the $100 price for a stripped down PC (cf. (3.6)) and the resulting factor of
2500 are acceptable, Table 1 can be used to derive equipment cost equivalent key sizes in

25

the following manner. A lower bound for the equipment cost for a successful one day
attack is given in the second to last column of Table 1, in year y in dollars of year y.

The symmetric key sizes are derived based on Hypothesis 1, and the EC key sizes
are based on estimates that are cost consistent with the symmetric key sizes (cf. (3.6)), so
for those systems no corrections are necessary.

For classical asymmetric systems, Mips Years are supposedly 2500 times as
expensive, which is, for our computational purposes only, equivalent to assuming that the
DES offers acceptable security until about 1997, since 1997 − 1982 = 15 and 2(15∗ 23/30)

(cf. (4.1)) is close to 2500. Thus, using (4.4), classical asymmetric key sizes that are
equipment cost equivalent to symmetric and EC key sizes for year y can be found in
Table 1 in the classical asymmetric key size column for year y − (23∗ 15)/43 = y − 8. The
resulting key sizes, rounded up to the nearest multiple of 32, are given as the second entry
in the classical asymmetric key sizes column of Table 1. Breaking such keys requires a
substantially smaller number of Mips Years than the infeasible number of Mips Years for
year y, but acquiring the required Mips Years is supposed to be prohibitively expensive.

For subgroup discrete logarithm systems in year y, let t and s be the subgroup and
finite field size, respectively, for year y, and let s′ be the finite field size for year y − 8.
For cost equivalence with symmetric and EC key sizes in year y use subgroups of size t +
4∗ log2(s) − 4∗ log2(s′) over finite fields of size s′. As a rule of thumb, subgroups of size
t + 2 over finite fields of size s′ will do.

As an example, in the year 2000 the following key sizes are more or less
equipment cost equivalent: 70-bit symmetric keys, 682-bit classical asymmetric keys,
127-bit subgroups with 682-bit finite fields, and 132-bit EC keys.

A similar straightforward analysis can be carried out for any other PC price one
may prefer. For instance, for $10 or $1000 per PC the y − 8 should be changed into y − 6
or y − 10, respectively.

4.7. Currently cost equivalent key sizes
To use Table 1 to look up key sizes that may currently (i.e., in the year 1999) be
considered to be cost equivalent, use the same method as in (4.5) with 1950.8 replaced by
1943 and 2796.2 by 2785. Here we use the same $100 price for a stripped down PC as in
(4.6). As an example, for a symmetric key of size d = 85 we find that y = 2019 and y’ =
30∗ 85/43 + 1943 = 2002.3. Currently cost equivalent key sizes are: about 1035 bits for
classical asymmetric keys, subgroups of size 150 + 2 = 152 over 1035 bits fields, and EC
systems of 160-bits. Similarly, for a classical asymmetric key of size d’ = 1024 we find
that y = 2002 and that a currently cost equivalent symmetric key size is given by
43∗ 2002/30 − 2785 ≈ 85.

4.8. Figures
The growth rates of the various key sizes in Table 1 is illustrated in Figures 1, 2, and 3 at
the end of this article.

5. Practical consequences of Table 1

26

5.1. DSS
The US Digital Signature Standard (DSS) uses 160-bit subgroups with field sizes ranging
from 512 to 1024 bits, and a 160-bit hash function. According to Table 1 these sizes can
be recommended for commercial applications only until the year 2002 for the field size,
until 2013 for the hash function, and until 2026 for the subgroup size. Thus, the security
offered by the DSS may become questionable very soon, unless the DSS is used in
combination with a 1513-bit finite field until 2013. A change in the field size does not
affect the size of the DSS signatures. Beyond 2013 the 160-bit size of SHA-1, the
cryptographic hash function used in conjunction with the DSS, may no longer be
adequate. Note, however, that the hash size may have to match the subgroup size, so that
changing the hash size may force a change in the subgroup size that would otherwise not
have been necessary until 2026. According to [18], NIST is working on a revision for the
DSS, with key sizes as reported in Table 2 (and hash size matching the size of q).

Table 2
Proposed key sizes for the revised DSS
size q 160 256 384 512
size p 1024 3072 7680 15360

5.2. Effect on cryptosystem speed
RSA keys that are supposed to be secure until 2040 are about three times larger than the
popular 1024-bit RSA keys that are currently secure. That makes those large keys 9 to 27
times slower to use: 9 for signature verification or encryption assuming a fixed length
public exponent, 27 for the corresponding signature generation or decryption. TDL
systems will slowdown by a factor 27 compared to those that are currently secure. SDL
systems slowdown by about a factor 11 compared to currently secure SDL systems,
because of the growth of the underlying finite field combined with the growth of
subgroup size. The speed of EC systems, however, is hardly affected: a slowdown by a
factor of at most 4 in the worst case scenario where full scale cryptanalytic progress à la
Moore is assumed. Within a few years, however, faster processors will have solved these
performance problems by our Moore assumption. Note, however, that this may not be the
case in more restricted environments such as smartcards, where bandwidth and power
consumption constraints also have a more limiting effect on key sizes.

5.3. 512-bit RSA keys
Despite the fact that they were already considered to be suspicious in 1990, 512-bit RSA
keys are still widely used all over the Web. For instance, 512-bit RSA moduli are used in
the international version of Secure Socket Layer (SSL) secured webservers to exchange
session keys. An attacker who breaks an SSL RSA modulus will be able to access all
session keys used by the SSL server, and hence all information protected by those keys.
According to Table 1, 512-bit RSA keys should not have been used beyond 1986. It
should be noted that, apart from the security risk of using 512-bit RSA keys, there are
also considerable publicity risks in using them: organizations using them may get bad
media-coverage when it is found out, because a 512-bit RSA key was factored in August

27

1999. Although this result is the first published factorization of a 512-bit RSA modulus, it
would be naïve to believe that it is the first time such a factorization has been obtained.

5.4. 768-bit RSA keys
According to Table 1 usage of 768-bit RSA keys can no longer be recommended. Even in
the equipment cost equivalent model 768-bit RSA keys will soon no longer offer security
comparable to the security of the DES in 1982.

5.5. RSA and EC
If one evaluates L[21024] omitting the o(1) the result is close to the number of 32-bit
operations to be performed by a Pollard rho attack on a 160-bit EC system. It was shown
in (2.3.1), however, that L[n] substantially overestimates the actual number of operations
to be performed by the NFS factorization of n. Nevertheless, in the (commercial)
cryptographic literature 1024-bit RSA and 160-bit EC systems are often advertised as
offering more or less the same level of security. If one is interested in currently
computationally equivalent security then 1024-bit RSA and 139-bit EC systems or 1375-
bit RSA and 160-bit EC systems may be considered to be comparable, as follows from
the example in (4.5). For currently cost equivalent security the example in (4.7) suggests
that 1024-bit RSA and 159-bit EC systems or 1035-bit RSA and 160-bit EC systems may
be comparable. These last comparisons depend strongly on the price one deems
reasonable for a stripped down PC, as explained in (3.6) and (4.6).

5.6. SDL and EC
The gap between the suggested SDL and EC key sizes widens slowly (cf. Figure 3). This
is due to the rapidly growing size of the underlying finite fields in SDL, which makes the
finite field operations required for Pollard’s rho attack relatively slow. Note that the field
size for SDL systems can be found in the classical asymmetric key size column.

5.7. Effectiveness of guessing
The sizes suggested in Table 1 for the year 2000 or later are in practice infeasible to
guess.

5.8. Effectiveness of incomplete attacks
Spending only a fraction IMY(y)/x of the full effort IMY(y) required to break a system
using the key sizes suggested for year y leads to success probability 1/x for exhaustive
search (symmetric systems), 0 for the (DL)NFS (classical asymmetric systems; for the
ECM see (5.9)), or 1/x2 for Pollard’s rho (SDL and EC; cf. (2.3.2), (2.3.3)). This implies
that on average incomplete attacks cannot be expected to pay off. Despite the lack of
appreciable economic incentive an attacker may nonetheless try to harness a small
fraction of the required run time and get a non-negligible chance that his efforts bear
fruit.

5.9. Effectiveness of Elliptic Curve Method
The Elliptic Curve Method (ECM) finds a 167-bit factor of a 768-bit number with
probability 0.63 after spending 6200 Mips Years, under the assumption such a factor
exists (cf. [32]). Based on this data point, we have computed the probability that the ECM

28

successfully factors RSA moduli of the sizes specified in Table 1, assuming we invest the
corresponding IMY(y) Mips Years in each factoring attempt: for a 952-bit RSA modulus
the probability of success is 2.6∗ 10−7 after spending 7.1∗ 109 Mips Years (for y = 2000),
deteriorating to probability 1.9∗ 10−9 for a 1149-bit modulus in 2005, and 1.2∗ 10−11 for
1369 bits in 2010. It follows that, despite the impossibly large investment, the ECM
cannot be expected to break keys of the suggested sizes. The ECM success probability
vanishes with the years, consistent with the fact that the NFS is asymptotically superior to
the ECM.

5.10. Wassenaar Arrangement for mass market applications
Currently the Wassenaar Arrangement allows 64-bit symmetric keys and 512-bit classical
asymmetric keys for mass market applications. According to Table 1 and publicly
available data on successful attacks it would be advisable to increase the 512-bit bound
for classical asymmetric keys to a more reasonable bound such as 672 or 768 bits.

Disclaimer. The contents of this article are the sole responsibility of its authors and not
of their employers. The authors or their employers do not accept any responsibility for
the use of the cryptographic key sizes suggested in this article. The authors do not have
any financial or other material interests in the conclusions attained in this paper, nor were
they inspired or sponsored by any party with commercial interests in cryptographic key
size selection. The data presented in this article were obtained in a two stage approach
that was strictly adhered to: formulation of the model and collection of the data points,
followed by computation of the lower bounds. No attempt has been made to alter the
resulting data so as to better match the authors (and possibly others) expectations or taste.
The authors made every attempt to be unbiased as to their choice of favorite
cryptosystem, if any. Although the analysis and the resulting guidelines seem to be quite
robust, this will no longer be the case if there is some ‘off-the-chart’ cryptanalytic or
computational progress affecting any of the cryptosystems considered here. Indeed,
according to at least one of the present authors, strong long-term reliance on any current
cryptosystem without very strong physical protection of all keys involved – including
public ones – is irresponsible.

Acknowledgements. The authors want to thank Joe Buhler, Bruce Dodson, Stuart Haber,
Paul Leyland, Alfred Menezes, Andrew Odlyzko, Michael Wiener, and Paul
Zimmermann for their helpful remarks.

References

1. Ross Anderson, Why cryptosystems fail, Comm. of the ACM, v. 37, n. 11, Nov.
1994, 32-40.

2. Eli Biham, A fast new DES implementation in software.
3. M. Blaze, W. Diffie, R.L. Rivest, B. Schneier, T. Shimomura, E. Thompson, M.

Wiener, Minimal key lengths for symmetric ciphers to provide adequate commercial
security, www.bsa.org/policy/ encryption/cryptographers_c.html, January 1996.

29

4. A. Bosselaers, Even faster hashing on the Pentium, manuscript, Katholieke
Universiteit Leuven, May 13, 1997.

5. J.R.T. Brazier, Possible NSA decryption capabilities, http://jya.com/nsa-study.htm.
6. S. Cavallar, B. Dodson, A.K. Lenstra, B. Murphy, P.L. Montgomery, H.J.J. te Riele,

Factorization of a 512-bit RSA key using the number field sieve, manuscript, October
1999.

7. www.counterpane.com/speed.html.
8. M. Davio, Y. Desmedt, J. Goubert, F. Hoornaert, J.J. Quisquater, Efficient hardware

and software implementations of the DES, Proceedings Crypto’84.
9. W. Diffie, BNR Inc. report, 1980.
10. W. Diffie, E. Hellman, Exhaustive cryptanalysis of the NBS Data Encryption

Standard, Computer, v. 10 (1977), 74-84.
11. B. Dixon, A.K. Lenstra, Factoring integers using SIMD sieves, Proceedings

Eurocrypt’93, LNCS 765, 28-39.
12. Electronic Frontier Foundation, Cracking DES, O’Reilly, July 1998.
13. Rob Gallant, personal communication, August 1999.
14. P.C. Kocher, Breaking DES, RSA Laboratories’ Cryptobytes, v. 5, no 2 (1999) ; also

at www.rsa.com/rsalabs/pubs/cryptobytes.
15. P.C. Kocher, personal communication, September 1999.
16. A.K. Lenstra, A. Shamir, TWINKLE and the number field sieve, manuscript in

preparation, september 1999.
17. P. Leyland, personal communication, September 1999.
18. A.J. Menezes, personal communication, September 1999.
19. P.L. Montgomery, letter to the editor of IEEE Computer, August 1999.
20. V.I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm,

Mathematical Notes, 55 (2) 1994, 155-172. Translated from Matematicheskie
Zametki, 55(2), 91-101, 1994. This result dates back from 1968.

21. Tiniest circuits hold prospect of explosive computer speeds, The New York Times,
July 16, 1999; Chip designers look for life after silicon, The New York Times, July
19, 1999.

22. A.M. Odlyzko, The future of integer factorization, RSA Laboratories’ Cryptobytes, v.
1, no. 2 (1995), 5-12; also at www.research.att.com/~amo/doc/crypto.html or
www.rsa.com/rsalabs/pubs/cryptobytes.

23. A. Shamir, Factoring integers using the TWINKLE device, manuscript, April 1999.
24. P.W. Shor, Algorithms for quantum computing: discrete logarithms and factoring,

Proceedings of the IEEE 35th Annual Symposium on Foundations of Computer
Science, 124-134, 1994.

25. V. Shoup, Lower bounds for discrete logarithms and related problems, Proceedings
Eurocrypt’97, LNCS 1233, 256-266.

26. R.D. Silverman, rump session presentation at Crypto’97.
27. R.D. Silverman. Exposing the Mythical MIPS Year, IEEE Computer, August 1999,

22-26.
28. P.C. van Oorschot, M.J. Wiener, Parallel collision search with cryptanalytic

applications, Journal of Cryptology, v. 12 (1999), 1-28.
29. M.J. Wiener, Efficient DES key search, manuscript, Bell-Northern Research, August

20, 1993.

30

30. M.J. Wiener, Performance Comparison of Public-Key Cryptosystems, RSA
Laboratories’ Cryptobytes, v. 4, no. 1 (1998), 1-5; also at www.rsa.com/rsalabs/pubs/
cryptobytes.

31. M.J. Wiener, personal communication, 1999.
32. P. Zimmermann, personal communication, 1999.

Figure 1. Suggested lower bounds for key sizes for symmetric key cryptosystems.

31

Figure 2. Suggested lower bounds for key sizes for classical asymmetric key systems.

32

Figure 3. Suggested lower bounds for key sizes for subgroup discrete logarithm and
elliptic curve systems.

	2.2. Symmetric key cryptosystems
	2.3. Asymmetric key cryptosystems
	2.3.1. Classical asymmetric systems
	2.3.2. Subgroup discrete logarithm systems
	2.3.3. Elliptic curve systems
	2.4. Cryptographic hash functions
	3.3. Security margin
	3.4. Computing environment
	3.6. Software versus special-purpose hardware attacks
	3.7. Memory considerations
	3.8. Remark
	4.1. Method of computation
	4.2. Remarks on the computation of Table 1
	4.3. Using Table 1
	
	
	Assuming one agrees with our hypotheses, Table 1 can be used as follows. Suppose one develops a commercial application in which the confidentiality or integrity of the electronic information has to be guaranteed for 20 years, i.e., until the year 2020. L
	If finite fields are used in SDL or EC systems that allow significantly faster arithmetic operations than suggested by our estimates, the data in Table 1 can still be used: if the field arithmetic goes x times faster, keys should be roughly 2(log2(x) bit

	Table 1

	4.4. Alternative security margin
	According to Hypothesis I the DES offered enough security for commercial applications until the year 1982, but not beyond 1982. For corporations that have used the DES beyond 1982 or even until the late nineties our infeasibility assumption of 0.5 MMY in
	The Table 1 entries in italics for years before 1999 may be used in the last application; the other italics entries may be used if x < 0. The correctness of these methods follows easily from the formulas given in (4.1).
	4.8. Figures
	5. Practical consequences of Table 1
	5.1. DSS
	Table 2
	
	
	
	Proposed key sizes for the revised DSS

	5.2. Effect on cryptosystem speed
	5.5. RSA and EC
	5.6. SDL and EC
	5.7. Effectiveness of guessing
	5.8. Effectiveness of incomplete attacks
	5.9. Effectiveness of Elliptic Curve Method
	5.10. Wassenaar Arrangement for mass market applications
	References

