The CAST-256 Encryption Algorithm

Carlisle Adams

CAST-256 is a symmetric cipher designed in accordance with the CAST design procedure as outlined in [A97]. It is an extension of the CAST-128 cipher and has been submitted as a candidate for NIST's Advanced Encryption Standard (AES) effort -- see http://csrc.nist.gov/encryption/aes/aes_home.htm for details.

This document contains several sections of the CAST-256 AES Submission Package delivered to NIST on June 9th, 1998. All complete submissions received by NIST will be made public in late August at the First AES Candidate Conference, but the following material is being made available now so that public analysis of the CAST-256 algorithm may begin (see, for example, http://www.ii.uib.no/~larsr/aes.html for the current status of submitted algorithms).

Many thanks are due to those who worked with me in the (long, challenging, frustrating, and very enjoyable!) design and analysis phases that ultimately led to the detailed specification given below: Howard Heys (Memorial University); Stafford Tavares (Queen's University); and Michael Wiener (Entrust Technologies). As well, many thanks are due to the two who did the various implementations on a variety of platforms (Reference C, Optimized C, Optimized Java, and even M6811 Assembler): Serge Mister and Ian Clysdale (both of Entrust Technologies).

[A97] C. Adams, "Constructing Symmetric Ciphers Using the CAST Design Procedure", in *Selected Areas in Cryptography*, Kluwer Academic Publishers, 1997, pp.71-104 (reprinted from *Designs, Codes and Cryptography*, vol. 12, no. 3, November 1997).

CAST-256 Algorithm Specification

1. Algorithm Specification

1.1 CAST-128 Notation

The following notation from CAST-128 [A97b, A97c] is relevant to CAST-256.

- CAST-128 uses a pair of subkeys per round: a 5-bit quantity k_{r_i} is used as a "rotation" key for round i and a 32-bit quantity k_{m_i} is used as a "masking" key for round i.
- Three different round functions are used in CAST-128. The rounds are as follows (where D is the data input to the operation, I_a I_d are the most significant byte through least significant byte of I, respectively, S_i is the i^{th} s-box (see following page for s-box definitions), and O is the output of the operation). Note that + and are addition and subtraction modulo 2^{32} , \oplus is bitwise eXclusive-OR, and \rightarrow is the circular left-shift operation.

Type 1:
$$I = ((k_{m_i} + D) \downarrow k_{r_i})$$

$$O = ((S_1[I_a] \oplus S_2[I_b]) - S_3[I_c]) + S_4[I_d]$$
 Type 2:
$$I = ((k_{m_i} \oplus D) \downarrow k_{r_i})$$

 $O = ((S_1[I_a] - S_2[I_b]) + S_3[I_c]) \oplus S_4[I_d]$

Type 3:

$$I = ((k_{m_i} - D) \downarrow k_{r_i})$$

 $O = ((S_1[I_a] + S_2[I_b]) \oplus S_3[I_c]) - S_4[I_d]$

Let f_1, f_2, f_3 be keyed round function operations of Types 1, 2, and 3 (respectively) above.

• CAST-128 uses four round function substitution boxes (s-boxes), S_1 - S_4 . These are defined as follows (entries (written in hexadecimal notation) are to be read left-to-right, top-to-bottom).

S-Box S_1

```
30fb40d4 9fa0ff0b 6beccd2f 3f258c7a 1e213f2f 9c004dd3 6003e540 cf9fc949 bfd4af27 88bbbdb5 e2034090 98d09675 6e63a0e0 15c361d2 c2e7661d 22d4ff8e
28683b6f c07fd059 ff2379c8 775f50e2 43c340d3 df2f8656 887ca41a a2d2bd2d
alc9e0d6 346c4819 61b76d87 22540f2f 2abe32e1 aa54166b 22568e3a a2d341d0
66db40c8 a784392f 004dff2f 2db9d2de 97943fac 4a97c1d8 527644b7 b5f437a7
b82cbaef d751d159 6ff7f0ed 5a097a1f 827b68d0 90ecf52e 22b0c054 bc8e5935
4b6d2f7f 50bb64a2 d2664910 bee5812d b7332290 e93b159f b48ee411 4bff345d
fd45c240 ad31973f c4f6d02e 55fc8165 d5b1caad alac2dae a2d4b76d c19b0c50
882240f2 0c6e4f38 a4e4bfd7 4f5ba272 564c1d2f c59c5319 b949e354 b04669fe b1b6ab8a c71358dd 6385c545 110f935d 57538ad5 6a390493 e63d37e0 2a54f6b3 3a787d5f 6276a0b5 19a6fcdf 7a42206a 29f9d4d5 f61b1891 bb72275e aa508167 38901091 c6b505eb 84c7cb8c 2ad75a0f 874a1427 a2d1936b 2ad286af aa56d291
d7894360 425c750d 93b39e26 187184c9 6c00b32d 73e2bb14 a0bebc3c 54623779
64459eab 3f328b82 7718cf82 59a2cea6 04ee002e 89fe78e6 3fab0950 325ff6c2
81383f05 6963c5c8 76cb5ad6 d49974c9 cal80dcf 380782d5 c7fa5cf6 8ac31511 35e79e13 47da91d0 f40f9086 a7e2419e 31366241 051ef495 aa573b04 4a805d8d
548300d0 00322a3c bf64cddf ba57a68e 75c6372b 50afd341 a7c13275 915a0bf5 6b54bfab 2b0b1426 ab4cc9d7 449ccd82 f7fbf265 ab85c5f3 1b55db94 aad4e324 cfa4bd3f 2deaa3e2 9e204d02 c8bd25ac eadf55b3 d5bd9e98 e31231b2 2ad5ad6c 954329de adbe4528 d8710f69 aa51c90f aa786bf6 22513f1e aa51a79b 2ad344cc
7b5a41f0 d37cfbad 1b069505 41ece491 b4c332e6 032268d4 c9600acc ce387e6d
bf6bb16c 6a70fb78 0d03d9c9 d4df39de e01063da 4736f464 5ad328d8 b347cc96 75bb0fc3 98511bfb 4ffbcc35 b58bcf6a e11f0abc bfc5fe4a a70aec10 ac39570a
3f04442f 6188b153 e0397a2e 5727cb79 9ceb418f 1cacd68d 2ad37c96 0175cb9d
c69dff09 c75b65f0 d9db40d8 ec0e7779 4744ead4 b11c3274 dd24cb9e 7e1c54bd
f01144f9 d2240eb1 9675b3fd a3ac3755 d47c27af 51c85f4d 56907596 a5bb15e6
580304f0 ca042cf1 011a37ea 8dbfaadb 35ba3e4a 3526ffa0 c37b4d09 bc306ed9 98a52666 5648f725 ff5e569d 0ced63d0 7c63b2cf 700b45e1 d5ea50f1 85a92872
af1fbda7 d4234870 a7870bf3 2d3b4d79 42e04198 0cd0ede7 26470db8 f881814c
474d6ad7 7c0c5e5c d1231959 381b7298 f5d2f4db ab838653 6e2f1e23 83719c9e
bd91e046 9a56456e dc39200c 20c8c571 962bda1c ele696ff b141ab08 7cca89b9 1a69e783 02cc4843 a2f7c579 429ef47d 427b169c 5ac9f049 dd8f0f00 5c8165bf
```

S-Box S_2

```
1f201094ef0ba75b69e3cf7e393f4380fe61cf7aeec5207a55889c9472fc0651ada7ef794e1d7235d55a63cede0436ba99c430ef5f0c079418dcdb7dald6eff3a0b52f7b59e83605ee15b094e9ffd909dc440086ef944459ba83ccb3e0c3cdfbd1da41813b092ab1f997f1c1a5e6cf7b01420ddbe4e7ef5b25a1ff41e180f8061fc41080179bee7ad37ac6a9fe5830a498de8b7f77e83f4e7992926924fa9f7be113c85bacc40083d7503525f7ea615f621431540d554b635d681121c866c3593d63cf73cee234c0d4d87e875c672b21071f618139f7627f361e3084e4eb573b602f64a4d63acd9c1bbc46359e81032d2701f50c99847ab4a0e3df79ba6cf38c108430942537a95ef46f6ffea1ff3b1f208cfb6a8f458c74d9e0a2274ec73a34fc884f693e4de8dfef0e00883559648d8a45388c1d804366721d9bfda58684bbe8256333844e8212128d8098fed33fb4ce280ae127e19ba5d5a6c252e49754bdc5d655ddeb66706477840b4da1b6a80184db26a9e0b5671421f043b7e5d0586054f03084066ff472a31aa153dac4755b5625dbf68561be683ca6b942d6ed23beccf01dba6d3d0bab6803d5caf77a70933b4a34c397bc8d65ee22b955f0e53045
```

73f98417	a1269859	ec645c44	52c877a9	cdff33a6	a02b1741	7cbad9a2	2180036f
50d99c08	cb3f4861	c26bd765	64a3f6ab	80342676	25a75e7b	e4e6d1fc	20c710e6
cdf0b680	17844d3b	31eef84d	7e0824e4	2ccb49eb	846a3bae	8ff77888	ee5d60f6
7af75673	2fdd5cdb	a11631c1	30f66f43	b3faec54	157fd7fa	ef8579cc	d152de58
db2ffd5e	8f32ce19	306af97a	02f03ef8	99319ad5	c242fa0f	a7e3ebb0	c68e4906
b8da230c	80823028	dcdef3c8	d35fb171	088a1bc8	bec0c560	61a3c9e8	bca8f54d
c72feffa	22822e99	82c570b4	d8d94e89	8b1c34bc	301e16e6	273be979	b0ffeaa6
61d9b8c6	00b24869	b7ffce3f	08dc283b	43daf65a	f7e19798	7619b72f	8f1c9ba4
dc8637a0	16a7d3b1	9fc393b7	a7136eeb	c6bcc63e	1a513742	ef6828bc	520365d6
2d6a77ab	3527ed4b	821fd216	095c6e2e	db92f2fb	5eea29cb	145892f5	91584f7f
5483697b	2667a8cc	85196048	8c4bacea	833860d4	0d23e0f9	6c387e8a	0ae6d249
b284600c	d835731d	dcb1c647	ac4c56ea	3ebd81b3	230eabb0	6438bc87	f0b5b1fa
8f5ea2b3	fc184642	0a036b7a	4fb089bd	649da589	a345415e	5c038323	3e5d3bb9
43d79572	7e6dd07c	06dfdf1e	6c6cc4ef	7160a539	73bfbe70	83877605	4523ecf1

S-Box S_3

8defc240 25fa5d9f eb903dbf e810c907 47607fff 369fe44b 8c1fc644 aececa90 beb1f9bf eefbcaea e8cf1950 51df07ae 920e8806 f0ad0548 e13c8d83 927010d5 11107d9f 07647db9 b2e3e4d4 3d4f285e b9afa820 fade82e0 a067268b 8272792e 553fb2c0 489ae22b d4ef9794 125e3fbc 21fffcee 825b1bfd 9255c5ed 1257a240 4e1a8302 bae07fff 528246e7 8e57140e 3373f7bf 8c9f8188 a6fc4ee8 c982b5a5 a8c01db7 579fc264 67094f31 f2bd3f5f 40fff7c1 1fb78dfc 8e6bd2c1 437be59b 99b03dbf b5dbc64b 638dc0e6 55819d99 a197c81c 4a012d6e c5884a28 ccc36f71 b843c213 6c0743f1 8309893c 0feddd5f 2f7fe850 d7c07f7e 02507fbf 5afb9a04 a747d2d0 1651192e af70bf3e 58c31380 5f98302e 727cc3c4 0a0fb402 0f7fef82 8c96fdad 5d2c2aae 8ee99a49 50da88b8 8427f4a0 1eac5790 796fb449 8252dc15 efbd7d9b a672597d ada840d8 45f54504 fa5d7403 e83ec305 4f91751a 925669c2 23efe941 a903f12e 60270df2 0276e4b6 94fd6574 927985b2 8276dbcb 02778176 f8af918d 4e48f79e 8f616ddf e29d840e 842f7d83 340ce5c8 96bbb682 93b4b148 ef303cab 984faf28 779faf9b 92dc560d 224dle20 8437aa88 7d29dc96 2756d3dc 8b907cee b51fd240 e7c07ce3 e566b4a1 c3e9615e 3cf8209d 6094d1e3 cd9ca341 5c76460e 00ea983b d4d67881 fd47572c f76cedd9 bda8229c 127dadaa 438a074e 1f97c090 081bdb8a 93a07ebe b938ca15 97b03cff 3dc2c0f8 8d1ab2ec 64380e51 68cc7bfb d90f2788 12490181 5de5ffd4 dd7ef86a 76a2e214 b9a40368 925d958f 4b39fffa ba39aee9 a4ffd30b faf7933b 6d498623 193cbcfa 27627545 825cf47a 61bd8ba0 d11e42d1 cead04f4 127ea392 10428db7 8272a972 9270c4a8 127de50b 285balc8 3c62f44f 35c0eaa5 e805d231 428929fb b4fcdf82 4fb66a53 0e7dc15b 1f081fab 108618ae fcfd086d f9ff2889 694bcc11 236a5cae 12deca4d 2c3f8cc5 d2d02dfe f8ef5896 e4cf52da 95155b67 494a488c b9b6a80c 5c8f82bc 89d36b45 3a609437 ec00c9a9 44715253 0a874b49 d773bc40 7c34671c 02717ef6 4feb5536 a2d02fff d2bf60c4 d43f03c0 50b4ef6d 07478cd1 006e1888 a2e53f55 b9e6d4bc a2048016 97573833 d7207d67 de0f8f3d 72f87b33 abcc4f33 7688c55d 7b00a6b0 947b0001 570075d2 f9bb88f8 8942019e 4264a5ff 856302e0 72dbd92b ee971b69 6ea22fde 5f08ae2b af7a616d e5c98767 cf1febd2 61efc8c2 f1ac2571 cc8239c2 67214cb8 ble583d1 b7dc3e62 7f10bdce f90a5c38 0ff0443d 606e6dc6 60543a49 5727c148 2be98a1d 8ab41738 20e1be24 af96da0f 68458425 99833be5 600d457d 282f9350 8334b362 d91d1120 2b6d8da0 642b1e31 9c305a00 52bce688 1b03588a f7baefd5 4142ed9c a4315c11 83323ec5 dfef4636 a133c501 e9d3531c ee353783

S-Box S_4

9db30420 1fb6e9de a7be7bef d273a298 4a4f7bdb 64ad8c57 85510443 fa020ed1 7e287aff e60fb663 095f35a1 79ebf120 fd059d43 6497b7b1 f3641f63 241e4adf 28147f5f 4fa2b8cd c9430040 0cc32220 fdd30b30 c0a5374f 1d2d00d9 24147b15 ee4d111a 0fca5167 71ff904c 2d195ffe 1a05645f 0c13fefe 081b08ca 05170121 80530100 e83e5efe ac9af4f8 7fe72701 d2b8ee5f 06df4261 bb9e9b8a 7293ea25 ce84ffdf f5718801 3dd64b04 a26f263b 7ed48400 547eebe6 446d4ca0 6cf3d6f5 2649abdf aea0c7f5 36338cc1 503f7e93 d3772061 11b638e1 72500e03 f80eb2bb abe0502e ec8d77de 57971e81 e14f6746 c9335400 6920318f 081dbb99 ffc304a5 4d351805 7f3d5ce3 a6c866c6 5d5bcca9 daec6fea 9f926f91 9f46222f 3991467d a5bf6d8e 1143c44f 43958302 d0214eeb 022083b8 3fb6180c 18f8931e 281658e6 26486e3e 8bd78a70 7477e4c1 b506e07c f32d0a25 79098b02 e4eabb81 28123b23 69dead38 1574ca16 df871b62 211c40b7 a51a9ef9 0014377b 041e8ac8 09114003

bd59e4d2	e3d156d5	4fe876d5	2f91a340	557be8de	00eae4a7	0ce5c2ec	4db4bba6
e756bdff	dd3369ac	ec17b035	06572327	99afc8b0	56c8c391	6b65811c	5e146119
6e85cb75	be07c002	c2325577	893ff4ec	5bbfc92d	d0ec3b25	b7801ab7	8d6d3b24
20c763ef	c366a5fc	9c382880	0ace3205	aac9548a	eca1d7c7	041afa32	1d16625a
6701902c	9b757a54	31d477f7	9126b031	36cc6fdb	c70b8b46	d9e66a48	56e55a79
026a4ceb	52437eff	2f8f76b4	0df980a5	8674cde3	edda04eb	17a9be04	2c18f4df
b7747f9d	ab2af7b4	efc34d20	2e096b7c	1741a254	e5b6a035	213d42f6	2c1c7c26
61c2f50f	6552daf9	d2c231f8	25130f69	d8167fa2	0418f2c8	001a96a6	0d1526ab
63315c21	5e0a72ec	49bafefd	187908d9	8d0dbd86	311170a7	3e9b640c	cc3e10d7
d5cad3b6	Ocaec388	f73001e1	6c728aff	71eae2a1	1f9af36e	cfcbd12f	c1de8417
ac07be6b	cb44a1d8	8b9b0f56	013988c3	b1c52fca	b4be31cd	d8782806	12a3a4e2
6f7de532	58fd7eb6	d01ee900	24adffc2	f4990fc5	9711aac5	001d7b95	82e5e7d2
109873f6	00613096	c32d9521	ada121ff	29908415	7fbb977f	af9eb3db	29c9ed2a
5ce2a465	a730f32c	d0aa3fe8	8a5cc091	d49e2ce7	0ce454a9	d60acd86	015f1919
77079103	dea03af6	78a8565e	dee356df	21f05cbe	8b75e387	b3c50651	b8a5c3ef
d8eeb6d2	e523be77	c2154529	2f69efdf	afe67afb	f470c4b2	f3e0eb5b	d6cc9876
39e4460c	1fda8538	1987832f	ca007367	a99144f8	296b299e	492fc295	9266beab
b5676e69	9bd3ddda	df7e052f	db25701c	1b5e51ee	f65324e6	6afce36c	0316cc04
8644213e	b7dc59d0	7965291f				b657c34d	4edfd282
7ae5290c	3cb9536b	851e20fe	9833557e	13ecf0b0	d3ffb372	3f85c5c1	0aef7ed2

1.2 CAST-256 Notation

The following notation is employed in the specification of CAST-256.

Let f_1, f_2, f_3 be as defined for CAST-128.

Let $\beta = (ABCD)$ be a 128-bit block where A, B, C, and D are each 32 bits in length.

Let " $\beta \leftarrow Q_i(\beta)$ " be short-hand notation for the following:

$$C = C \oplus f_1(D, k_{r_0}^{(i)}, k_{m_0}^{(i)})$$

$$B = B \oplus f_2(C, k_{r_1}^{(i)}, k_{m_1}^{(i)})$$

$$A = A \oplus f_3(B, k_{r_2}^{(i)}, k_{m_2}^{(i)})$$

 $D = D \oplus f_1(A, k_{r_3}^{(i)}, k_{m_3}^{(i)})$

Let " $\beta \leftarrow \overline{Q}_i(\beta)$ " be short-hand notation for the following:

$$\begin{split} D &= D \oplus f_1(A, k_{r_3}^{(i)}, k_{m_3}^{(i)}) \\ A &= A \oplus f_3(B, k_{r_2}^{(i)}, k_{m_2}^{(i)}) \\ B &= B \oplus f_2(C, k_{r_1}^{(i)}, k_{m_1}^{(i)}) \\ C &= C \oplus f_1(D, k_{r_0}^{(i)}, k_{m_0}^{(i)}) \end{split}$$

 $(Q(\cdot))$ is called a "forward quad-round" and $\overline{Q}(\cdot)$ is called a "reverse quad-round".)

Let $k_r^{(i)} = \{k_{r_0}^{(i)}, k_{r_1}^{(i)}, k_{r_2}^{(i)}, k_{r_3}^{(i)}\}$ be the set of rotation keys for the i^{th} quad-round, where $k_{r_i}^{(i)}$ is a 5-bit rotation key for f_1, f_2 , or f_3 (as specified above).

Let $k_m^{(i)} = \{k_{m_0}^{(i)}, k_{m_1}^{(i)}, k_{m_2}^{(i)}, k_{m_3}^{(i)}\}$ be the set of masking keys for the i^{th} quad-round, where $k_{m_j}^{(i)}$ is a 32-bit masking key for f_1, f_2 , or f_3 (as specified above).

CAST-256 Notation (cont'd)

Let $\kappa = (ABCDEFGH)$ be a 256-bit block where A, B, ..., H are each 32 bits in length.

Let " $\kappa \leftarrow \omega_i(\kappa)$ " be short-hand notation for the following:

$$G = G \oplus f_{1}(H, t_{r_{0}}^{(i)}, t_{m_{0}}^{(i)})$$

$$F = F \oplus f_{2}(G, t_{r_{1}}^{(i)}, t_{m_{1}}^{(i)})$$

$$E = E \oplus f_{3}(F, t_{r_{2}}^{(i)}, t_{m_{2}}^{(i)})$$

$$D = D \oplus f_{1}(E, t_{r_{3}}^{(i)}, t_{m_{3}}^{(i)})$$

$$C = C \oplus f_{2}(D, t_{r_{4}}^{(i)}, t_{m_{4}}^{(i)})$$

$$B = B \oplus f_{3}(C, t_{r_{5}}^{(i)}, t_{m_{5}}^{(i)})$$

$$A = A \oplus f_{1}(B, t_{r_{6}}^{(i)}, t_{m_{6}}^{(i)})$$

$$H = H \oplus f_{2}(A, t_{r_{7}}^{(i)}, t_{m_{7}}^{(i)})$$

($\omega(\cdot)$) is called a "forward octave".)

Let " $k_r^{(i)} \leftarrow \kappa$ " be short-hand notation for the following:

$$k_{r_0}^{(i)} = 5LSB(A), \ k_{r_1}^{(i)} = 5LSB(C), \ k_{r_2}^{(i)} = 5LSB(E), \ k_{r_3}^{(i)} = 5LSB(G)$$

where 5LSB(x) denotes "the five least significant bits of x".

Let " $k_m^{(i)} \leftarrow \kappa$ " be short-hand notation for the following:

$$k_{m_0}^{(i)} = H, k_{m_1}^{(i)} = F, k_{m_2}^{(i)} = D, k_{m_3}^{(i)} = B$$

1.3 The CAST-256 Cipher

 β = 128 bits of plaintext.

$$\begin{aligned} for(i = 0; \ i < 6; \ i + +) \\ \beta &\leftarrow Q_i(\beta) \\ for(i = 6; \ i < 12; \ i + +) \\ \beta &\leftarrow \overline{Q}_i(\beta) \end{aligned}$$

128 bits of ciphertext = β

Round Key Re-Ordering for Decryption

The cipher employs a 256-bit primary key K. Decryption is identical to encryption except that the sets of quad-round keys $k_r^{(i)}$, $k_m^{(i)}$ derived from K are used in reverse order as follows.

```
for(i = 0; i < 12; i + +) \{
k_{r_{new}}^{(i)} = k_r^{(11-i)}
k_{m_{new}}^{(i)} = k_m^{(11-i)}
}
```

1.4 The CAST-256 Key Schedule

Initialization:

$$\begin{split} c_m &= 2^{30} \sqrt{2} = 5A827999_{16} \\ m_m &= 2^{30} \sqrt{3} = 6ED9EBA1_{16} \\ c_r &= 19 \\ m_r &= 17 \\ \\ for(i=0;\ i < 24;\ i++) \\ for(j=0;\ j < 8;\ j++) \{ \\ t_{m_j}{}^{(i)} &= c_m \\ c_m &= (c_m + m_m) \operatorname{mod} 2^{32} \\ t_{r_j}{}^{(i)} &= c_r \\ c_r &= (c_r + m_r) \operatorname{mod} 32 \\ \} \end{split}$$

Key Schedule:

 $\kappa = ABCDEFGH = 256$ bits of primary key, K.

$$for(i = 0; i < 12; i + +) \{$$

$$\kappa \leftarrow \omega_{2i}(\kappa)$$

$$\kappa \leftarrow \omega_{2i+1}(\kappa)$$

$$k_r^{(i)} \leftarrow \kappa$$

$$k_m^{(i)} \leftarrow \kappa$$

$$\}$$

Note:

$$(|K| = 128) \Rightarrow (E = F = G = H = 0)$$

 $(|K| = 160) \Rightarrow (F = G = H = 0)$
 $(|K| = 192) \Rightarrow (G = H = 0)$
 $(|K| = 224) \Rightarrow (H = 0)$

2. Design Rationale

2.1 Overall Structure

The fundamental mechanism for the expansion of a 64-bit block size to a larger block size is the generalization of the basic Feistel network (Schneier and Kelsey [SK96] have referred to the structure used here as an "incomplete" Feistel network). The motivation is as follows. In a traditional Feistel network (such as DES), rather than thinking of the exchange of left and right halves in each round as a "swap", it may be viewed as a circular right-shift of 32 bits. Such a view allows one to consider a cipher with a block size of 32n bits, which uses the same round function as the original cipher but requires n rounds (instead of 2) to input all bits of the block to the round function.

A picture may help to clarify the operation.

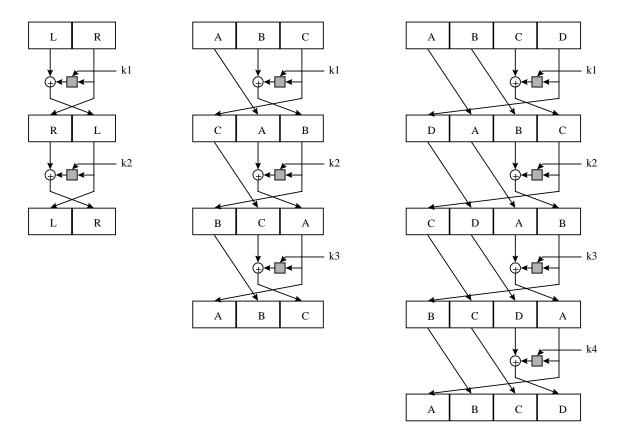


Figure 1

The left-most diagram is the "traditional" Feistel network. If this describes two rounds of DES, then *L* and *R* are each 32 bits in length and the cipher has a 64-bit block size. Continuing the illustration, the middle diagram describes an extended Feistel network for a cipher with a 96-bit block size, and the right-most diagram describes the structure of a cipher with a 128-bit block size. In each case, we may think of the number of rounds shown as a basic "unit" (in terms of submitting all input bits to the round function); the actual number of rounds chosen for the full cipher will be some multiple of this "unit" (e.g., for DES, the multiple is 8).

2.2 Decryption Considerations

The disadvantage of the generalized structure given above is that it requires a separate structure for decryption (since data must be left-shifted, rather than right-shifted, in each round in order to go backwards through the rounds). By contrast, with the "traditional" Feistel network decryption and encryption are identical except for a change in the ordering of the round keys so no separate structure is needed. Clearly, in constrained environments (such as hardware or firmware implementations that are very resource-limited) requiring two structures is unattractive.

A simple solution to the above concern is to design the structure such that if there are r rounds in the full cipher, the first r/2 rounds use right-shifting (as shown in the diagram above) and the last r/2 rounds use left-shifting. In this way, the desirable feature of "traditional" Feistel networks with respect to decryption (i.e., that decryption is identical to encryption, requiring only a reversal of the round keys) is preserved. This simplifies implementation and operation of the cipher and helps to make its use feasible in resource-limited environments.

2.3 Choice of Round Function

One of the very attractive features of the generalized structure given above is that it enables direct re-use of the round function from the "traditional" Feistel network. Within the class of DES-like ciphers, it is well known that increasing the size of the round function typically involves increasing the size of its component substitution boxes (s-boxes); it is also well known that increasing s-box size is generally difficult. For those ciphers that already employ large s-boxes, size increases can be a monumental task. [As a particular example, doubling the input and output sizes of a carefully-constructed 8×32 s-box may require a work factor of roughly 2⁶⁴ steps (more than is necessary to break DES by exhaustive search!), aside from the fact that the resulting s-box grows from 4 Kbytes to more than half a million bytes of memory.] Being able to re-use the original round function is therefore very desirable. The important technical decision, however, is which "traditional" Feistel network round function to use in the generalized network.

The CAST-128 set of round functions has a number of appealing features.

- Firstly, the component bent-function-based s-boxes are designed according to a mathematical procedure which produces substitution boxes with several important cryptographic properties (such as high nonlinearity, low XOR difference distribution table values, good higher-order Strict Avalanche Criterion, and good higher-order (Output) Bit Independence Criterion) [A97b].
- Secondly, the use of both a "masking" key and a "rotation" key ensures that the key entropy is higher than the data entropy in each round (following the recommendation of [RPD97]) and appears to make the construction of iterative statistical attacks such as linear and differential cryptanalysis significantly more difficult (or impossible) [A97b].
- Thirdly, the mixing of operations from different algebraic groups (addition modulo 2 and addition / subtraction modulo 2³²) appears to be effective not only in reducing the probability of the round differential [AM97, O'C98], but in reducing the possibility of higher-order differential attacks as well [MSK98].
- Finally, mixing the order of the group operations (i.e., by varying the order of round functions throughout the cipher, as is done in CAST-128) appears to frustrate the practical construction of iterative characteristics.

In summary, then, the extensive analysis done on the CAST design procedure (including focused attention within several master's- and doctoral-level theses on symmetric cipher design and analysis) lends confidence to its choice as the round function for this generalized Feistel network.

[See CAST-256: Algorithm Analysis below for a partial list of published work which discusses or analyzes various aspects of the CAST design procedure. For one significant example of unpublished work that has been done on CAST, the Communications Security Establishment, after extensive analysis, has determined and will formally state that the CAST-128 algorithm is suitable for the protection of all levels of Designated information within the Government of Canada. Please see the attached letter dated June 5th, 1998, and note that "CAST5" is the name used for "CAST-128" when specific key lengths are explicitly intended (see [A97c], Section 2.5).

2.4 Number of Rounds

Given that the basic unit (see "Overall Structure" above) in DES is a "double round" and that a multiple of 8 is used to give the full 16-round cipher, it is reasonable to conclude that a 128-bit block size, with a "quad-round" as the basic unit, should consist of at least 32 rounds for the full cipher. It is important to note, however, that a cipher being constructed as a candidate for AES consideration must support not only twice the block size of CAST-128, but twice the key size as well. A deeper security analysis (see attached document, *CAST-256: Algorithm Analysis*) suggests that 48 rounds (i.e., 12 "quad rounds") provides security protection commensurate with the parameters of the desired cipher.

2.5 Key Schedule

Key scheduling (deriving a set of round keys from an initial key) is an extremely important aspect of cipher design since sub-optimal key schedules can lead to exploitable weaknesses in the cipher (including weak keys, equivalent keys, complementation properties, and susceptibility to related-key attacks), and overly-complicated key schedules can lead to prohibitively-long set-up times (limiting the use of the cipher in some environments).

The design philosophy chosen for the CAST-256 key schedule is identical to that chosen for the CAST-256 cipher itself: the key schedule essentially describes a generalized Feistel network with a 256-bit block size. A simple (but fixed) set of round keys is used to key this network and the CAST-256 initial key is used as the plaintext input. Some of the output bits of selected rounds during this "encryption" define the actual round keys for the CAST-256 cipher. Important features of this key scheduling approach include the following.

- The inherent strength of the generalized Feistel network is used in the key schedule to create round keys, increasing confidence that the set of key values (comprised of the generated round keys and the CAST-256 initial key) will appear to be pair-wise independent to any statistical analysis.
- If an attack can be mounted that derives four or more full round keys (i.e., full masking keys and the corresponding rotation keys) from the CAST-256 cipher, it still appears to require a computational effort of at least $2^{256 (4*32) (4*5)} = 2^{108}$ guesses to derive the CAST-256 initial key from this information.

- Since the key schedule describes a generalized Feistel network, it is extremely unlikely that key collisions can occur. The key schedule defines a cipher with a fixed key (i.e., a permutation over the input space) so for two different CAST-256 initial keys to produce identical sets of round keys, the different cipher inputs would have to map to round function outputs (in every relevant round) that differed only in the 108 bits *not* used to produce round key bits. The probability of this occurring in each octave that produces round keys is $2^{108}/2^{256} = 2^{-148}$, so the probability that this occurs over the full set of round keys is $2^{-148*12} = 2^{-1776}$ (essentially zero, since there are only 2^{256} possible initial keys).
- The key scheduling operation requires the equivalent of four CAST-256 encryption operations to produce a full set of round keys. This ratio is not prohibitive for most environments and compares favorably with many current implementations of DES.

The key schedule chosen for CAST-256 appears to have a number of desirable cryptographic features and takes into account much of the research into key schedule design and analysis over the past two decades (see, for example, [A94] and the references included in [A97]).

2.6 Conclusions

A number of alternatives exist for doubling the block size of a cipher from 64 bits to 128 bits, including the following.

- Feistel network. In such a design, the round function of the Feistel network is the original 64-bit cipher, which may itself be a Feistel network (this is a simple extension of ideas presented in, for example, [LR88, L96]).
- Substitution-Permutation (SP) network [F73]. In such a design, two parallel implementations of the original cipher are used as the substitution layers; these are interspersed with an extended permutation layer (i.e., a permutation which is the width of the desired block size).
- "Fenced" Construction [R96]. In such a design, two parallel implementations of the original cipher are surrounded by specially-constructed mixing operations, which in turn are surrounded by a layer of substitution boxes.

However, it was felt that all the alternatives considered had one or more drawbacks which made them somewhat less attractive as AES submission candidates. For example, the Feistel network suffers significant security degradation if one or two rounds may be "peeled off" by some attack (not an uncommon situation) since the entire outer network would likely consist of only four or six rounds (for performance reasons). The SP network may be subject to poor encryption / decryption performance since even two substitution layers with a permutation layer in between (the minimum possible configuration) halves the speed of the original cipher; a larger number of layers decreases performance significantly beyond this. Finally, the Fenced construction has non-trivial design and implementation impacts with the need for solid theoretical justification for the particular mixing operations used and the need for sufficient processing time and memory for the pseudo-random generation and storage of the necessary s-boxes.

The approach taken in this proposal to achieve block size doubling (i.e., the use of a generalized Feistel network) appears to be the simplest and most elegant of the various alternatives. It has none of the drawbacks listed above, is straightforward to understand and to analyze, and builds on the confidence gained from the extensive literature on ciphers based on Feistel networks. Furthermore, it allows unmodified re-use of a round function with a number of attractive cryptographic features, and suggests an intuitive architecture for the associated key scheduling algorithm.

We conclude that the rationale for CAST-256 is solid, resting on firm theoretical results and immediately appealing, defensible, concepts for every aspect of the cipher design. The resulting algorithm has good performance, reasonable code and memory size, and high security (according to all analysis conducted to date); it thus appears to meet all the requirements for an AES submission candidate.

3. Bit Naming / Numbering Convention Provided

True (needed only in section 1.1 CAST-128 Notation above, where most- to least-significant bytes of a 32-bit word are specified).

4. No Parity Bits Specified in the Key Definition

True.

5. References

- [A94] C. Adams, "Simple and Effective Key Scheduling for Symmetric Ciphers", in *Workshop Record* of the Workshop on Selected Areas in Cryptography (SAC '94), Kingston, Canada, May 1994, pp.129-133.
- [A97] C. Adams, "DES-80", in *Workshop Record* of the Workshop on Selected Areas in Cryptography (SAC '97), Ottawa, Canada, August 1997, pp.160-171.
- [A97b] C. Adams, "Constructing Symmetric Ciphers Using the CAST Design Procedure", in *Selected Areas in Cryptography*, E. Kranakis and P. Van Oorschot (ed.), Kluwer Academic Publishers, 1997, pp.71-104 (reprinted from *Designs, Codes and Cryptography*, vol. 12, no. 3, November 1997).
- [A97c] C. Adams, "The CAST-128 Encryption Algorithm", RFC 2144, May 1997.
- [AM97] C. Adams and S. Mister, Preliminary experimental results concerning the mixing of operations from different algebraic groups and the contents of the resulting XOR difference distribution table (unpublished).
- [F73] H. Feistel, "Cryptography and Computer Privacy", *Scientific American*, vol. 228, no. 5, 1973, pp.15-23.
- [L96] S. Lucks, "Faster Luby-Rackoff Ciphers", in *Proceedings of the Third International Workshop on Fast Software Encryption*, Cambridge, UK, February 1996, Springer, LNCS 1039, pp.189-203.
- [LR88] M. Luby and C. Rackoff, "How to Construct Pseudorandom Permutations From Pseudorandom Functions", *SIAM Journal of Computing*, vol. 17, no. 2, April 1988, pp.373-386.

- [MSK98] S. Moriai, T. Shimoyama, and T. Kaneko, "Higher Order Differential Attack of a CAST Cipher", *Proceedings of the Fifth International Workshop on Fast Software Encryption*, Paris, France, March 1998, LNCS 1372, Springer, pp.17-31.
- [O'C98] L. O'Connor, Preliminary analytical results concerning the mixing of operations from different algebraic groups and the maximum value of the resulting XOR difference distribution table (unpublished).
- [R96] T. Ritter, "The Fenced DES Cipher: Stronger Than DES But Made From DES", http://www.io.com/~ritter/FENCED.HTM, November 10, 1996.
- [RPD97] V. Rijmen, B. Preneel, and E. De Win, "On Weaknesses of Non-surjective Round Functions", in *Selected Areas in Cryptography*, E. Kranakis and P. Van Oorschot (ed.), Kluwer Academic Publishers, 1997, pp.41-54.
- [SK96] B. Schneier and J. Kelsey, "Unbalanced Feistel Networks and Block Cipher Design", in *Proceedings of the Third International Workshop on Fast Software Encryption*, Cambridge, UK, February 1996, Springer, LNCS 1039, pp.121-144.

Communications Security Establishment

Centre de la sécurité des télécommunications

P.O. Box 9703 Terminal C.P. 9703 Terminus

Ottawa, Canada

Ottawa, Canada

K1G 3Z4

K1G 3Z4

05 June 1998

Mr. Brian O'Higgins
Executive Vice President and
Chief Technology Officer
Entrust Technologies
750 Heron Road
Suite 800
Ottawa, Ontario
K1V 1A7

Dear Mr. O'Higgins,

I am very pleased to advise you that CSE has completed its evaluation of the CAST5 algorithm (80 and 128 bit versions). We have determined that CAST5 is suitable for the protection of all levels of Designated information within the GOC. A formal statement of this approval will be promulgated to Government of Canada departments and agencies in the very near future.

On behalf of the Communications Security Establishment please accept my congratulations.

David McKerrow Communications Security Establishment Director General Information Technology Security

CAST-256 Computational Efficiency

1. Efficiency Estimates for the NIST AES Analysis Platform

1.1 Platform Description

IBM-compatible PC, with an Intel Pentium Pro Processor, 200MHz clock speed, 64MB RAM, running Windows95.

1.2 Speed Estimates (in clock cycles)

<u>Operation</u>	<u>128/128</u>	<u>192/128</u>	<u>256/128</u>
Encrypt one data block:	1790	1790	1790
Decrypt one data block:	1790	1790	1790
Key setup:	9090	9090	9090
Algorithm setup:	0	0	0
Key change:	9090	9090	9090

1.3 Tradeoffs Between Speed and Memory

For environments in which memory is not a scarce resource, s-boxes S_1 and S_2 can be combined into three 16×32 s-boxes (one corresponding to $S_1\oplus S_2$, one corresponding to S_1-S_2 , and one corresponding to S_1+S_2 , for each of the three round function types). This saves one memory lookup and combining operation per round, which will result in a modest performance increase.

2. Efficiency Estimates for 8-Bit Processors

2.1 Platform Description

Motorola 6811 microprocessor, 2MHz clock speed, assembly language implementation.

2.2 Speed Estimates (in clock cycles)

<u>Operation</u>	<u>128/128</u>	<u>192/128</u>	<u>256/128</u>
Encrypt one data block:	26000	26000	26000
Decrypt one data block:	26000	26000	26000
Key setup:	110000	110000	110000
Algorithm setup:	0 ms	0 ms	0 ms
Key change:	110000	110000	110000

2.3 Tradeoffs Between Speed and Memory

None known.

3. Efficiency Estimates for Other Platforms

3.1 Platform Description

IBM-compatible PC, with an Intel Pentium II Processor, 300MHz clock speed, 128MB RAM, running Windows NT 4.0, assembly language implementation.

3.2 Speed Estimates (in clock cycles)

<u>Operation</u>	<u>128/128</u>	<u>192/128</u>	<u>256/128</u>
Encrypt one data block:	815	815	815
Decrypt one data block:	815	815	815
Key setup:	4130	4130	4130
Algorithm setup:	0	0	0
Key change:	4130	4130	4130

3.3 Tradeoffs Between Speed and Memory

For environments in which memory is not a scarce resource, s-boxes S_1 and S_2 can be combined into three 16×32 s-boxes (one corresponding to $S_1\oplus S_2$, one corresponding to S_1-S_2 , and one corresponding to S_1+S_2 , for each of the three round function types). This saves one memory lookup and combining operation per round, which will result in a modest performance increase.

4. Efficiency Estimates for Other Platforms

4.1 Platform Description

Sun UltraSparc 1, 167MHz clock speed, 124MB RAM, running Solaris 2.5.

4.2 Speed Estimates (in clock cycles)

<u>Operation</u>	<u>128/128</u>	<u>192/128</u>	<u>256/128</u>
Encrypt one data block:	1180	1180	1180
Decrypt one data block:	1180	1180	1180
Key setup:	5830	5830	5830
Algorithm setup:	0	0	0
Key change:	5830	5830	5830

4.3 Tradeoffs Between Speed and Memory

For environments in which memory is not a scarce resource, s-boxes S_1 and S_2 can be combined into three 16×32 s-boxes (one corresponding to $S_1\oplus S_2$, one corresponding to S_1-S_2 , and one corresponding to S_1+S_2 , for each of the three round function types). This saves one memory lookup and combining operation per round, which will result in a modest performance increase.

5. General Efficiency Comments

As will be noted in the tables given above, CAST-256 has the following features:

- it requires no algorithm setup time (e.g., there is no need to generate s-boxes or other tables, and no need to pre-compute values);
- decryption performance is identical to encryption performance;
- key change time is identical to key setup time;
- there is no penalty for key size differences (i.e., encryption / decryption performance and key setup performance are unaffected by whether the primary key is 128 bits, 256 bits, or a value in between).

CAST-256 Algorithm Analysis

1. Analysis With Respect to Known Attacks

The classical attacks on ciphers are as follows: *ciphertext only*; *known plaintext*; and *chosen plaintext*. The advent of public-key cryptography added utility to the concept of a *chosen ciphertext* attack, but this appears to be of little added value in the analysis of symmetric ciphers. Research in the past decade or so has also introduced the notions of *chosen key* and *related key* attacks, which have enjoyed some success in the cryptanalysis of specific symmetric ciphers. Within the iterated symmetric ciphers (the class of algorithms to which CAST-256 belongs), the techniques known as *linear cryptanalysis* and *differential cryptanalysis* (along with their combinations and higher-orders) currently represent the most general and powerful instances of *known plaintext* and *chosen plaintext* attacks, respectively.

This section of the submission package examines the CAST-256 algorithm with respect to the families of cryptanalytic attack listed above.

1.1 Ciphertext Only Attack

No techniques are currently known that will allow an attacker to infer or derive information about the plaintext, the primary key, or any subset of round keys from any collection of ciphertext blocks. The one (unavoidable) exception to this is the technique applicable to all n-bit-block ciphers when used in Cipher-Block-Chaining (CBC) mode: once $2^{n/2}$ blocks have been encrypted, with probability roughly $\frac{1}{2}$ (rapidly increasing as more blocks are encrypted) an XOR relationship between a particular pair of plaintexts will be known.

1.2 Known Plaintext Attack: Linear Cryptanalysis

Linear cryptanalysis [M94] attempts to exploit any high-probability occurrences of linear expressions of input, output, and round key bits in the round function of an iterated cipher. It has been approximated [M94] that the best linear expression for *r*-rounds of a cipher has a probability of being satisfied that is bounded as follows:

$$\left| p_L - \frac{1}{2} \right| \le 2^{\alpha - 1} \cdot \left| p_\beta - \frac{1}{2} \right|^{\alpha}$$

where p_L represents the probability that the linear expression holds, p_β represents the probability of the best linear approximation, and α represents the number of s-boxes involved in that linear approximation. This expression is based on the assumption of independent round keys such that the linear approximations of the s-boxes are independent. In an analogous way to "differentials" and "characteristics" in differential cryptanalysis, provable immunity in linear cryptanalysis relies on bounding the likelihood of an overall linear expression (sometimes referred to as the "linear hull") rather than any particular linear "characteristic". However, for many ciphers (including CAST-256) this is a difficult analytical task. What are typically considered, therefore, are the building blocks of an overall linear expression: the sequence of approximations of the round functions which result in the overall linear expression.

A basic linear attack typically uses a sequence of linear approximations of the rounds to create an overall linear expression involving subsets of plaintext and ciphertext bits. From this it is possible to derive the equivalent of one key bit represented as the XOR of a number of round key bits. In this case, it is shown [M94] that the number of known plaintexts required is approximately

$$N_L = \left| p_L - \frac{1}{2} \right|^{-2}$$
.

It can be shown that the best linear approximation has a probability given by

$$\left| p_{\beta} - \frac{1}{2} \right| = \frac{2^{m-1} - NL_{\min}}{2^m}$$

where m is the number of input bits to the s-box and NL_{\min} is the nonlinearity of the s-box [LHT97]. For the s-boxes of CAST-256, m=8 and $NL_{\min}=74$. Furthermore, for the CAST-256 cipher, the best linear approximation appears to involve 4 s-boxes every 4 rounds such that the linear approximation of the round function for every 4^{th} round involves no output bits. That is, the linear expression used is $X_{i_1} \oplus X_{i_2} \oplus ... \oplus X_{i_r}$, where X_{i_j} represents an input bit to the s-box. Hence, for an r-round linear approximation, $\alpha = r$. The number of known plaintexts required for a 48-round linear approximation of CAST-256, then, is approximately 2^{122} . Note that this is almost equal to the total number of plaintexts available (2^{128}) and argues against the practicality of a linear attack on this cipher.

Furthermore, Youssef, *et al*, have proposed [YCT97] that a more accurate bound on the number of plaintexts required for linear cryptanalysis of a CAST cipher can be obtained by considering the combination of s-boxes in the round function rather than the individual s-boxes. In particular, they compute the value for NL_S , the nonlinearity of the composite

 32×32 s-box when the individual 8×32 s-boxes are combined using XOR. Using this in place of NL_{\min} in the equations above and setting m=32 and $\alpha=\frac{r}{2}$ (since an r-round linear approximation must involve at least as many 32×32 s-boxes as r/2 iterations of the best 2-round approximation) yields a number of known plaintexts required for a 48-round linear approximation at more than 2^{174} (far beyond the number of plaintexts available). Note that experimental evidence suggests that combining s-boxes using mixed operations may increase the nonlinearity of the composite s-box even further.

It therefore appears that CAST-256 is immune to a linear cryptanalysis attack.

1.3 Chosen Plaintext Attack: Differential Cryptanalysis

Differential cryptanalysis [BS93] attempts to exploit any high-probability output differences resulting from particular input differences in the round function of an iterated cipher. A block cipher can be proved to be resistant to differential cryptanalysis if it can be shown that no high-probability differentials [LMM91] exist, where an *i*-round differential is defined to be the XOR of two outputs after *i* rounds, where the outputs correspond to two plaintexts with a given XOR.

In a good cipher the probability of all differentials should approach 2^{-N} , where N is the block size. Strictly speaking, differential cryptanalysis requires only the existence of a highly-probable differential to succeed. However, differentials can be viewed to be comprised of a number of possible characteristics, where a characteristic specifies the exact sequence of input and output XORs for each round to achieve the overall differential input and output XOR.

It is typically difficult to derive the probability of any particular differential and, in practice, it would be hard for a cryptanalyst to determine the existence of a highly-probable differential without searching for highly-probable characteristics. Although it is often the case that an upper bound on the probability of a differential cannot be stated for a particular cipher (that is, resistance to a differential cryptanalytic attack cannot be proved), the probabilities of the most likely characteristics can be determined. These probabilities can then be used as a measure of the cipher's resistance to differential cryptanalysis.

As is common in the literature, the analysis here is based on the assumption that all round keys are independent (although this assumption is not always necessary; see [C97]) and that the occurrence of output XORs given particular input XORs is independent for different rounds. Under such conditions, the probability of an *r*-round characteristic is given by

$$p_{\Omega_r} = \prod_{i=1}^r p_i$$

where p_i represents the probability of the output XOR given the input XOR in round i. The best characteristics that can be constructed are typically iterative in nature. For the CAST-256 cipher with R rounds, the following appears to be the best possible r-round characteristic, where r is a multiple of 4. (Note that the notation (W,X,Y,Z) represents XOR vectors for the four 32-bit sub-blocks in a CAST-256 round function input.)

$(0,0,0,\Delta)$	[input XOR to round 1]
$0 \leftarrow \Delta$ with probability p	[round 1]
$0 \leftarrow 0$ with probability 1	[round 2]
$0 \leftarrow 0$ with probability 1	[round 3]
$0 \leftarrow 0$ with probability 1	[round 4]
	repeat up to $R/2$ rounds
$(0,\Delta,0,0)$, or some variation	[input XOR to round $(R/2 + 1)$]
$0 \leftarrow 0$ with probability 1	[round $(R/2 + 1)$]
$0 \leftarrow 0$ with probability 1	[round $(R/2 + 2)$]
$0 \leftarrow \Delta$ with probability p	[round $(R/2 + 3)$]
$0 \leftarrow 0$ with probability 1	[round $(R/2 + 4)$]
	repeat up to <i>r</i> rounds for <i>r</i> -round char.

The input XOR to round (R/2 + 1) will be a vector in which one of the sub-blocks is non-zero and the other three sub-blocks are zero (the precise variation which applies for a given cipher depends upon the value of R). Without loss of generality, the example $(0,\Delta,0,0)$ is shown above.

As per the analysis and rationale given in [LHT97], the input-output XOR pair for a simplified CAST round function (i.e., one which does not include the key-dependent rotation, and for which the only s-box combining operation used is XOR) can be assumed to have a probability of $p \le 2^{-14}$. This is based on the fact that all four s-boxes in the CAST round function are injective and the format of the XOR pair has the output XOR being equal to 0. This leads to the conclusion that the best *r*-round iterated characteristic as shown above has a probability given by

$$p_{\Omega_r} \le (2^{-14})^{\frac{r}{4}}$$

In particular, a 40-round characteristic must have a probability less than or equal to 2^{-140} according to the assumptions of the analysis. This implies that the number of chosen plaintexts required for this attack would be greater than 2^{140} for the 48-round cipher (substantially greater than the number of plaintexts available for a 128-bit block size).

It therefore appears that CAST-256 is immune to a differential cryptanalysis attack.

1.4 Chosen Key Attack

CAST-256 appears to be secure with respect to this attack. The use of a cipher (built around the CAST-128 set of round functions) as a key schedule gives confidence that no exploitable statistical correlation exists between the primary key and the set of generated round keys. Thus, allowing an attacker to choose a particular primary key difference appears to yield no exploitable similarities in the corresponding sets of round keys compared with the victim encrypting with two randomly-chosen primary keys.

1.5 Related Key Attack

CAST-256 appears to be secure with respect to this attack. The use of a cipher (built around the CAST-128 set of round functions) as a key schedule gives confidence that no exploitable statistical correlations exist within the set of generated round keys. Thus, this attack, which depends upon the use of a simple derivation algorithm for a round key from previous round keys, appears not to be applicable to CAST-256.

1.6 Enhancements to the Above Statistical Attacks: Combinations and Higher-Orders

The analysis given above for both linear and differential cryptanalysis applies to a greatly simplified version of the CAST-256 cipher. The actual cipher, which includes key-dependent rotation and mixed operations in the round function (both for data masking and for s-box combination), appears to be much more difficult / impossible to attack using the methods as described in [M94] and [BS93] (see [A97] for some discussion of this). In particular, experiments in which two CAST-256 s-boxes are combined using addition or subtraction modulo 2³² show that the maximum value in the XOR difference distribution table is approximately 10% of the maximum that occurs when the s-boxes are combined using XOR. Experiments on combinations of three CAST-256 s-boxes are on-going, but thus far show similar results. This lends confidence that combinations of four s-boxes using mixed operations (as is done in the CAST-256 round function) are effective in increasing resistance to differential cryptanalysis.

The above experimental work [AM97] is supported by a new analytical result [O'C98], which shows that for a random n-bit permutation, the probability that the maximum entry in a differential table based on XOR differences is greater than a bound B_n approaches 1 as n grows, whereas the probability that the maximum entry in a table based on non-XOR differences (e.g., modular addition or multiplication) is greater than that same bound approaches 0. Furthermore, the bound is accurate for the 8-bit case. Thus, although the details of the analyzed structure differ slightly from the internals of the CAST-256 round

function as used in the above experiments, the conclusion is the same: using operations from different algebraic groups appears to be helpful in increasing resistance to differential cryptanalysis (by lowering the differential probability of a single round).

1.6.1 Combination Attacks

CAST-256 appears to be immune to both linear and differential cryptanalysis (requiring more plaintext than is available from the 128-bit block size) and appears to be immune to both chosen and related key attacks (due to the absence of exploitable statistical correlations among its generated keys). Given this, it seems highly unlikely that various combination attacks (such as *linear-differential*, or *differential-related-key*) can have any measure of success.

It therefore appears that this cipher is immune to the combination attacks currently known in the literature.

1.6.2 Higher-Order Attacks

The concept of *higher-order differentials* has been introduced [L94, K95] and used to successfully cryptanalyze ciphers proved secure against ordinary differential cryptanalysis [JK97]. A simplified version of the CAST-128 cipher (one which uses XOR for all operations in the round function) has been examined with respect to the higher-order differential attack [MSK98]. It has been shown that this attack is successful up to 5 rounds, but cannot be extended to higher numbers of rounds. Furthermore, the introduction of the key-dependent rotation operation is effective in increasing the computational complexity of this attack. Finally, the use of operations from different algebraic groups "makes the degree too high to cryptanalyze by the higher-order differential attack" [MSK98], so that the attack cannot even be mounted on a 5-round version of the cipher.

It therefore appears that CAST-256 (which has 48 rounds and uses the CAST-128 round functions) is immune to a higher-order differential attack.

2. Statements Regarding Properties of Keys

This section provides statements regarding the following properties of keys with respect to CAST-256: weak keys, semi-weak keys, fixed points of a key, equivalent keys, and restrictions on key selection. It also includes a statement on complementation properties since this is sometimes related to the way that round keys are used within a DES-like cipher.

2.1 Weak Keys

None known. In the CAST-256 cipher, all keys appear to be of equivalent strength and are usable for double encryption (i.e., no key appears to be its own inverse).

2.2 Semi-Weak Keys

None known. In the CAST-256 cipher, there appear to be no pairs of keys which cannot be used for double encryption (i.e., there do not appear to be pairs of keys k_i and k_j such that k_j is the inverse of k_i).

2.3 Fixed Points of a key K

None known. From all evidence available thus far in the open literature, fixed points have only been easily found (i.e., requiring a level of effort for an n-bit block cipher of roughly $2^{n/2}$ operations rather than 2^n operations) in DES-like ciphers for weak and semiweak keys. It therefore appears that CAST-256 has no easily-found fixed points for any key.

2.4 Equivalent Keys

None known. The key schedule defines a cipher with a fixed key (i.e., a permutation over the input space) so for two different CAST-256 initial keys to produce identical sets of round keys, the different cipher inputs would have to map to round function outputs (in every relevant round) that differed only in the 108 bits *not* used to produce round key bits. The probability of this occurring in each octave that produces round keys is $2^{108}/2^{256} = 2^{-148}$, so the probability that this occurs over the full set of round keys is $2^{-148*12} = 2^{-1776}$ (essentially zero, since there are only 2^{256} possible initial keys).

2.5 Restrictions on Key Selection

None known. The key scheduling algorithm defines a symmetric block cipher with a fixed key where the CAST-256 primary key is used as the plaintext input. Because in this symmetric block cipher there are no restrictions on the input space (i.e., any plaintext can be encrypted), it follows that no restrictions are placed upon selection of CAST-256 primary keys.

2.6 Complementation Properties

None known. There appear to be no complementations of combinations of plaintext, key, and ciphertext that lead to identities. This is due to the complexity of the key scheduling operation (so that complementing the primary key leads to random-looking changes to all round keys) and also to the use of multiple operations to combine data, key, and s-boxes within the round functions (XOR, rotation, and addition and subtraction modulo 2^{32}).

3. Statement Regarding Trap-Doors

None known. There are several reasons to feel confident that there are no trap-doors in this cipher.

- CAST-256 uses the four round function s-boxes in CAST-128. The design criteria and construction procedure for these s-boxes have been published [A97, MA96] and the specific s-boxes themselves have been examined by a number of researchers.
- CAST-256 uses the three round functions in CAST-128. The design criteria for these round functions have been published [A97] and the specific round functions themselves have been examined by a number of researchers. Furthermore, the complexity introduced by the mixed operations in the round functions would seem to make it difficult to insert a trap-door of any kind.
- CAST-256 uses 48 rounds. Inserting a non-obvious trap-door that will carry through 48 rounds of the cipher would seem to be a formidable task.
- CAST-256 uses a significantly more complex key scheduling algorithm than DES. A trap-door in the final round that allows the attacker (i.e., the one knowing this trap-door) to recover information about the final round key will be of little help in deriving either other round keys or the primary key. This contrasts with DES in which knowledge of any round key gives knowledge of the primary key with only a brute-force search over 8 bits of key.

4. Publications Discussing or Analyzing Aspects of the CAST Design Procedure

- C. Adams and S. Tavares, "The Use of Bent Sequences to Achieve Higher-Order Strict Avalanche Criterion in S-Box Design", *Technical Report TR 90-013*, Department of Electrical Engineering, Queen's University, Kingston, Ontario, January 1990.
- C. Adams, "A Formal and Practical Design Procedure for Substitution-Permutation network Cryptosystems", *Ph.D. Thesis*, Dept. of Electrical Engineering, Queen's University, Kingston, Ontario, Canada, September, 1990.
- C. Adams and S. Tavares, "The Structured Design of Cryptographically Good S-Boxes", *Journal of Cryptology*, vol. 3, no. 1, 1990, pp.27-41.
- C. Adams and S. Tavares, "Designing S-Boxes for Ciphers Resistant to Differential Cryptanalysis", *Proceedings of the 3rd Symposium on State and Progress of Research in Cryptography*, Rome, Italy, 1993, pp.181-190.
- C. Adams, "Simple and Effective Key Scheduling for Symmetric Ciphers", Workshop on Selected Areas in Cryptography, SAC' 94, *Workshop Record*, 1994, pp.129-133.
- C. Adams, "Designing DES-like Ciphers with Guaranteed Resistance to Differential and Linear Attacks", Workshop on Selected Areas in Cryptography, SAC' 95, *Workshop Record*, 1995, pp.133-144.
- C. Adams, "Constructing Symmetric Ciphers Using the CAST Design Procedure", *Designs, Codes, and Cryptography*, vol. 12, no. 3, 1997, pp.283-316.
- H. Heys and S. Tavares, "On the Security of the CAST Encryption Algorithm", *Proceedings of the Canadian Conference on Electrical and Computer Engineering*, Halifax, NS, Canada, September 1994, pp.332-335.
- J. Lee, "An investigation of some security aspects of the CAST encryption algorithm", *M.Sc. Thesis*, Dept. of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, Canada, 1995.
- J. Lee, H. Heys, and S. Tavares, "Resistance of a CAST-like Encryption Algorithm to Linear and Differential Cryptanalysis", *Designs, Codes and Cryptography*, vol. 12, no. 3, 1997, pp.267-282.
- A. Menezes, P. van Oorschot, and S. Vanstone, *Handbook of Applied Cryptography*, CRC Press, 1997, p.281.

- S. Mister and C. Adams, "Practical S-Box Design", Workshop on Selected Areas in Cryptography, SAC '96, *Workshop Record*, 1996, pp.61-76.
- S. Moriai, T. Shimoyama, and T. Kaneko, "Higher Order Differential Attack of a CAST Cipher", *Proceedings of the Fifth International Workshop on Fast Software Encryption*, Paris, France, March 1998, LNCS 1372, Springer, pp.17-31.
- V. Rijmen, B. Preneel and E. De Win "On weaknesses of non-surjective round functions", *Designs, Codes and Cryptography*, vol. 12, no. 3, 1997, pp.253-266.
- B. Schneier, *Applied Cryptography: Protocols, Algorithms, and Source Code in C (2nd edition)*, John Wiley & Sons, 1996, pp.334-335.
- W. Stallings, *Cryptography and Network Security: Principles and Practice*, 2nd Edition, Prentice Hall, 1998 (to appear).
- A. Youssef, S. Tavares, S. Mister and C. Adams, "Linear approximation of Injective S-boxes", *IEE Electronics Letters*, vol.31, no. 25, 1995, pp.2168-2169.
- A. Youssef, Z. Chen and S. Tavares, "Construction of Highly Nonlinear Injective S-boxes with Application to CAST-like Encryption Algorithm", *Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE' 97)*, St. John's, NF, Canada, May 1997, pp.330-333.
- A. Youssef, "Analysis and Design of Block Ciphers", *Ph.D. Thesis*, Dept. of Electrical and Computer Engineering, Queen's University, Kingston, Canada, 1997.
- X. Zhu, "A New Class of Unbalanced CAST Ciphers and Its Security Analysis", *M.Sc. Thesis*, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, 1997.
- X. Zhu and H. Heys, "The Analysis of a New Class of Unbalanced CAST Ciphers", Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE' 97), St. John's, NF, Canada, May 1997, pp.326-329.

[Please note that a number of the above papers are available at the following location: http://adonis.ee.queensu.ca:8000/cast/]

5. References

- [A97] C. Adams, "Constructing Symmetric Ciphers Using the CAST Design Procedure", in *Selected Areas in Cryptography*, E. Kranakis and P. Van Oorschot (ed.), Kluwer Academic Publishers, 1997, pp.71-104.
- [AM97] C. Adams and S. Mister, Preliminary experimental results concerning the mixing of operations from different algebraic groups and the contents of the resulting XOR difference distribution table (unpublished).
- [BS93] E. Biham and A. Shamir, *Differential Cryptanalysis of the Data Encryption Standard*, Springer, 1993.
- [C97] A. Canteaut, "Differential Cryptanalysis of Feistel Ciphers and Differentially δ-uniform Mappings", Workshop on Selected Areas in Cryptography, SAC '97, *Workshop Record*, 1997, pp.172-184.
- [JK97] T. Jakobsen and L. Knudsen, "The Interpolation Attack on Block Ciphers", Proceedings of the Fourth International Workshop on Fast Software Encryption, Haifa, Israel, January 1997, LNCS 1267, Springer, pp.28-40.
- [K95] L. Knudsen, "Truncated and Higher Order Differentials", Proceedings of the Second International Workshop on Fast Software Encryption, Leuven, Belgium, 1995, LNCS 1008, Springer, pp.196-211.
- [L94] X. Lai, "Higher Order Derivatives and Differential Cryptanalysis", in *Proceedings of the Symposium on Communication, Coding and Cryptography, in honor of James L. Massey on the occasion of his 60th birthday, Feb. 10-13, 1994, Monte-Verita, Ascona, Switzerland, 1994.*
- [LMM91] X. Lai, J. Massey, and S. Murphy, "Markov Ciphers and Differential Cryptanalysis", *Advances in Cryptology: Proceedings of Eurocrypt '91*, Springer, 1991, pp.17-38.
- [LHT97] J. Lee, H. Heys, and S. Tavares, "Resistance of a CAST-like Encryption Algorithm to Linear and Differential Cryptanalysis", *Designs, Codes and Cryptography*, vol. 12, no. 3, 1997, pp.267-282.
- [M94] M. Matsui, "Linear Cryptanalysis Method for DES Cipher", *Advances in Cryptology: Proceedings of Eurocrypt '93*, Springer, 1994, pp.386-397.
- [MA96] S. Mister and C. Adams, "Practical S-Box Design", Workshop on Selected Areas in Cryptography, SAC '96, Workshop Record, 1996, pp.61-76.

- [MSK98] S. Moriai, T. Shimoyama, and T. Kaneko, "Higher Order Differential Attack of a CAST Cipher", *Proceedings of the Fifth International Workshop on Fast Software Encryption*, Paris, France, March 1998, LNCS 1372, Springer, pp.17-31.
- [O'C98] L. O'Connor, Preliminary analytical results concerning the mixing of operations from different algebraic groups and the maximum value of the resulting XOR difference distribution table (unpublished).
- [YCT97] A. Youssef, Z. Chen and S. Tavares, "Construction of Highly Nonlinear Injective S-boxes with Application to CAST-like Encryption Algorithm", *Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE' 97)*, St. John's, NF, Canada, May 1997, pp.330-333.