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On January 28, 1997, a series of new cryptographic
contests were launched by RSA Laboratories. The
goal was to quantify the security of the Data En-
cryption Standard (DES) and secret-key ciphers in
general when keys of different sizes are used.

It is widely agreed that 56-bit keys, as offered by
the DES standard [5], offer marginal protection
against a committed adversary. Indeed, theoretical
studies have been performed showing that it is pos-
sible to build a specialized “DES cracker” computer
that could crack keys in mere hours by exhaustive
search [9]. However, it is unknown whether any
such machine has been built, and DES is still very
widely used, in part because of its continued resis-
tance to sophisticated cryptanalytic attacks.

For those concerned about the length of the keys
used in DES there are a variety of options avail-
able, such as triple-DES [3] or an alternative ci-
pher like IDEA[4], Ron Rivest’s DESX [8] or RC5
[7] with which longer keys can be used. However,
for certain countries, among them the United
States, the export of cryptographic products is a

sensitive issue and the cryptographic length of the
encryption key may be limited. One generally-used
threshold that has been applied to exportability in
the United States has been that the strength of the
encryption should be equivalent to that offered by
a 40-bit symmetric encryption key.

There is no need for theoretical studies in this case
since 40-bit encryption has been acknowledged for
some time to offer little more than token resistance
to an adversary. Just how much resistance this is
was dramatically confirmed a mere three and a half
hours after the launch of the 40-bit contest on
January 28!

Exhaustive Key Search
Many problems require a large amount of compu-
tational power to derive a solution. Some prob-
lems, though, are amenable to an extremely high
level of parallelization, and with today’s Internet
it is possible to broaden the reach of any large-
scale effort to previously unanticipated levels. The
factorization of RSA-129 [1] in 1994 was remarkable
for the coordination via E-mail of the combined ef-
forts of 600 people and 1600 computers, including
two fax machines. The more recent factorization of
RSA-130 [2], which incidentally demonstrated the
increasing effectiveness of an alternative factoring
technique, shows the opportunities of coordinating a
global factoring effort with the World-Wide Web. In
fact, an earlier CryptoBytes article by Odlyzko [6]
has considered both the growth in the Internet and
also the increasing power of the constituent com-
puters as a part of his assessment for the future of
factorization.
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Editor’s Note

About RSA Laboratories

An academic environment within a commercial organization, RSA
Laboratories is the research and consulting division of RSA Data
Security, the company founded by the inventors of the RSA public-
key cryptosystem. Its purpose is to provide state-of-the-art exper-
tise on cryptography and information security for the benefit of
RSA Data Security and its customers. RSA Data Security is a
Security Dynamics company.

Newsletter Availability and
Contact Information

CryptoBytes is a free publication and all
issues, both current and past, are avail-
able via the World-Wide Web at <http://
www.rsa.com/rsalabs/pubs/cryptobytes.html>.

For each issue a limited number of copies
are printed. They are distributed at major
conferences and through direct mailing.
While available, additional copies of the
newsletter can be requested by contacting
RSA Laboratories though a nominal fee to
cover handling costs might be charged for
individual requests.

RSA Laboratories can be contacted at:

RSA Laboratories
100 Marine Parkway, Suite 500
Redwood City, CA 94065
415/595-7703
415/595-4126 (fax)
rsa-labs@rsa.com

We encourage
any readers

with comments,
opposite opinions,

suggestions or
proposals for

future issues to
contact the

CryptoBytes
editor.

In this issue of CryptoBytes we provide details and
some of the latest news from the recently launched
RSA Data Security Secret-Key Challenge. Aimed at
quantifying the resistance of symmetric ciphers to
exhaustive key search, substantial cash prizes are on
offer for the recovery of the secret keys used to con-
struct a variety of challenge encryptions.

The first two challenges have already been solved,
with considerable surrounding publicity, and in our
lead article for this issue we summarize the data pro-
vided during these challenges by the efforts of both
Ian Goldberg and Germano Caronni.

Interest in the Secret-Key Challenge is two-fold.
While the 48-bit challenge has provided us with in-
sight into the capabilities of distributing simple but
large computational tasks among many users, the re-
sults of the 40-bit challenge have already provided
useful information to the continuing debate on the
size of cryptographic keys and national export re-
strictions. It will also be interesting to see the im-
pact on the community when a 56-bit RC5 or DES
key has been recovered. This is particularly the case
when refinements to US cryptographic export laws
now allow the export of 56-bit technology, though
only under particular circumstances.

In the second invited article of this issue Peter
Gemmell offers us an overview of some different
threshold technologies available and the wide range
of properties they offer. These techniques are very
new, and have only received limited attention out-
side of the cryptographic community, but the proper-
ties offered are very appealing and they seem ideally
matched to the realities of today’s cryptographic
world. In particular, by avoiding the storage of a single
secret in one place, or by ensuring that a computa-
tion never requires the complete reconstruction of
sensitive and secret information, the opportunity for
a compromise in security can often be greatly reduced.

As always, the newsletter contains the latest news
from the world of standards and algorithm develop-
ment. In particular, we include an overview of the
status of RC5.  Published two years ago, RC5 is gain-
ing in popularity and results from the research com-
munity point to a cipher that delivers the security
the designer had originally hoped for. While only
time will serve to tell how RC5 will ultimately fare,

the two-year assessment we offer here demonstrates
that RC5 has made a very strong start.

The future success of CryptoBytes depends on input
from all sectors of the cryptographic community, and
as usual we would very much like to thank the writ-
ers who have contributed to this third issue of the
second volume. We encourage any readers with com-
ments, opposite opinions, suggestions or proposals
for future issues to contact the CryptoBytes editor at
RSA Laboratories or by E-mail to bytes-ed@rsa.com.
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that required 210 minutes.1 More details on
Goldberg’s dramatic demonstration of the inad-
equacy of 40-bit encryption keys are given below,
but it is interesting to observe that the approaches of
Goldberg and Caronni are essentially the same.

The Solution to the RC5-32/12/5 Contest

The 40-bit key used to encrypt the message “This is
why you should use a longer key” was recovered after
210 minutes of searching while using a total of 259 ma-
chines (287 processors). All resources were available at
the start and the rate of key testing was a steady 27
million keys per second.

• 97  UltraSPARCs
• 4  8-processor UltraSPARCs
• 120  HP workstations
• 8  Pentium Pros
• 30  SPARCStation 20s

The search used a centralized key server. Every time a cli-
ent needed a piece of the key space, it would do a short
timing test, and report its speed to the server. The server
would then give it about 20 minutes’ worth of key space.
When the client was finished, it would report back that it
was done, and repeat. The server kept track of what key
ranges were currently unallocated, in use, and done. If the
“unallocated” list were to become exhausted, the “in use”
list would be copied into the “unallocated” list. This would
handle the case of a client dying while working on some-
thing, though this feature wasn’t actually needed during
the RC5-32/12/5 contest.

Many thanks to Ian Goldberg for this information.

Solving RC5-32/12/6
With RC5-32/12/5 now closed, attention turned to
the 48-bit RC5 challenge. Server and client software
was updated and colleagues launched requests for
more people to join the mailing lists. The definitive
start of attack on RC5-32/12/6 was at 18:00 on Janu-
ary 29 (with a six-hour test run beforehand).

There are of course different approaches to an ex-
haustive search. The major consideration is perhaps
whether the search is coordinated by some central
server, or whether multiple processes start at random

How Exhausting is Exhaustive Search?
Continued from page 1

1 While the contest was available on the World-Wide Web, it
had still not been announced at the first day of the 1997 RSA
Data Security Conference before the 40-bit contest was solved!

Shifting our emphasis back to exhaustive key search, it
is clear that this is a problem that is perfectly suited to
massive parallelization. (This has already occurred in
an earlier attack on 40-bit SSL.) With the proper coor-
dination of a large number of computers distributed
around the Internet, it might well be possible to pro-
vide sufficient computational power to exhaustively
search the DES key space (or the key space of a cipher
with comparable key size) in a matter of weeks. And as
an important by-product for researchers and develop-
ers alike, we might hope to obtain information about
the full potential of distributing problems among a large
community of connected computers.

Solving RC5-32/12/5
In 1992, the first author and Werner Alemsberger
wrote software that would coordinate such a distrib-
uted search effort. The goal was to illustrate the dan-
gers of short and badly chosen local administrator
UNIX passwords and the software had been success-
ful in this, using up to 350 workstations for the task.
With the announcement of the Secret-Key Chal-
lenge and its impending launch on January 28, 1997,
another opportunity for putting this work to the test
presented itself.

During January the password-specific features were
cut out of the software (especially the handling of
different possible key space subsets) and RC5 was
added. The implementation of RC5 was optimized
for an Ultra 1/170 without using assembler and re-
quired 6.15 seconds to search 1,000,000 RC5-32/12/
5 keys. In the week before the challenge, access to
local student pools was organized and three days be-
fore the challenge more colleagues were contacted
to provide additional computing power.

The search for RC5-32/12/5 started at 18:07 MEZ
(9:07 PST), but a very subtle flaw in the server, found
by Christian Schneider at 20:30, caused the search
to crash multiple times (around 40 server restarts
were required). Despite that, the key was recovered
after 800 machines from ETH, Germany, Norway,
and the United States had searched 51% of the space
in 231 minutes with a key testing rate of about 40
million keys per second.

But it was 21 minutes too late. UC Berkeley gradu-
ate student Ian Goldberg had already found the cor-
rect key, in a search of about 31% of the key space

[…] exhaustive
key search […]
is a problem
that is perfectly
suited to
massive
parallelization.
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positions in the search space and run independently
until a key is found.

The use of a central server poses some difficulties.
As well as providing a single point of failure, there is
also the potential of network congestion and fail-
ures. Unintentionally malfunctioning clients could
cause havoc to a centrally-coordinated search effort,
but even worse are the potential risks if deliberately
malevolent clients are encountered. (Such a situa-
tion was not experienced in the attack on RC5-32/
12/6, however.)

A variety of precautions can be taken.  Servers can
be networked into a hierarchy, or perhaps replicated,
if resources allow, so that points of failure are less
catastrophic. In addition, clients can test themselves
to provide some level of assurance against malfunc-
tion and more explicit testing can be conducted on
the clients by servers to provide assurance against ma-
levolent clients. The server can have the client re-
port on server-fabricated problems which can be
checked at a very small cost. Alternatively, a client
could calculate a checksum over all attempted solu-
tions in the range examined and this could be
checked by another client of the same architecture.

Software Architecture
The design of the server client was intentionally very
simple. A trivial UDP protocol was used for clients
to register with the server, and for the server to send
jobs to the client. The protocol was extended when
additional needs became obvious. The following
graph depicts a typical exchange between a client
and the server:

an idle time. If the server is terminated, and a new
one is started, Job  Done messages are replied with
Request  Registration  so that the client regis-
ters itself with the new server.

Additionally, the server can send Kill  messages to
clients, which causes them to terminate. The UDP
protocol is used for data transfer, doing an idle re-
peat-request with the client as the driving side. The
server manages the key space in distinct chunks, and
check points to disk every few minutes in case of
software failure or machine reboots. Clients register
with the server, which deals out part of the key space
and remembers the recipient. If the time-out on the
key space segment expires, then the block is resched-
uled, and eventually assigned elsewhere. If a client
reports that a block has been searched, it is assigned
a new one.

Optimizations were mostly native assembler imple-
mentations of RC5 for the client of the software
packet. This was done for INTEL and RS6000. Find-
ing the best compiler and the best optimization op-
tions inevitably lead to a significant increase in per-
formance. Eventually the following architectures
were supported, though others did not find their way
back into the central repository:  AIX, FreeBSD, HP-
UX, IRIX, Linux, NEXTSTEP, NetBSD, OS2,
OSF1, OpenBSD, SCO_SV, SunOS, ULTRIX,
WINDOWS (NT & 95), AMIGA MacOS on MIPS,
ALPHA, (Ultra) SPARC, [45]86 Intel, Pentium Pro,
Paragons and massive parallel systems (16000
CPUs).

The Growth of Available Resources
As news of the attempt on RC5-32/12/6 spread, the
resources available for the search effort increased tre-
mendously. While the peak rate of key testing
achieved was 440 million keys/second, and the peak
number of parallel hosts was 4500 (with more than
7500 known workers), it is interesting to look at the
average growth of the available resources.

In Figure 1 we provide a measure of the growth of
the rate of key testing on a day by day basis. After a
slower build up, the rate of key testing roughly
doubled over the last two three-day periods with the
rate of February 6th being almost double that of Feb-
ruary 3rd and the rate for February 9th offering an-
other doubling of the rate of key testing.

The use of a
central server

poses some
difficulties.

Unintentionally
malfunctioning

clients could
cause havoc

to a centrally-
coordinated

search effort,
but even worse

are the
potential risks
if deliberately

malevolent
clients are

encountered.

Registration / Job Request

Job Done / Job Request
Job

Job

Client Server

Registration  contains version, machine, and host/
user information. Job  Request  gives the number of
keys that the client wants to search, and how long it
expects to take for this job. If the number of keys
communicated is zero, then the client plans to be-
come idle, and the server confirms this by a simple
Idle  Confirm  message. Additional messages from
the client to the server report a successful key guess,
or the fact that the client wishes to re-awake after



C R Y P T O B Y T E ST H E   T E C H N I C A L   N E W S L E T T E R   O F   R S A   L A B O R A T O R I E S   —   W I N T E R   1 9 9 7 5

0%

10%

20%

30%

40%

50%

60%

28 Jan 30 Jan 1 Feb 3 Feb 5 Feb 7 Feb 9 Feb date

key space searched

Figure 1: The average rate of key testing in Mkeys/sec
during each day of the challenge.

Note that this growth in computational power can
be compared to the constant rate of key testing (27
million keys per second) that the non-distributed ef-
fort of Ian Goldberg provided in the solution to the
RC5-32/12/5 challenge.

This key testing translates into a percentage of the
total key space that has been examined during the
course of the challenge. In Figure 2, we illustrate this
percentage on a day-by-day basis.

detailed information available from the many logs
kept during the challenge (information that is
available via http://www.ee.ethz.ch/challenge/,
http://www.klammeraffe.org/challenge/ and http://
www.42.org/challenge/) corroborate this view.

But does the single server approach generate a po-
tential bottleneck for such large search efforts? Un-
der normal conditions, no. By looking at the peak
conditions experienced towards the end of the RC5-
32/12/6 project we might assume that there are 5000
clients that report every 30 minutes to the server.
That means that around two clients talk to the server
every second, and the 300 bytes of traffic this gener-
ates per second is negligible. The server load on the
coordinating Sun Ultra 1/170 for RC5-32/12/6 was
below 2%, and the memory consumption for the
server was below 6 Mbytes. It appears that handling
up to 100,000 clients with a single server is perfectly
feasible. Any real bottlenecks would be the network
congestion that might be experienced on interna-
tional communication links.

Finally it is interesting to estimate the computing
power accumulated in the search for the 48-bit RC5
key. If we assume that 2,000 instructions are required
to test an RC5 key (this figure falls between two of
the implementations that were actually used) then
we find that the key search required 3.24 x 1017 in-
structions. Since a MIPS-year (MY), the number of
operations completed by a machine that runs for one
year at the rate of one million instructions per sec-
ond, contains around 3.15 x 1013 operations, the 48-
bit search effort managed to accumulate around
10,000 MY of computing power over 10 calendar
days. This demonstrates the increase in computing
power that might be available over the Internet. In
comparison, the RSA-129 factoring effort [1] in 1994
required 5,000 MY of computing power, and this was
accumulated over nine calendar months.

56-bit RC5, DES, and Other Efforts
What lessons can we take from the results of the
RC5-32/12/5 and RC5-32/12/6 challenges? At first
sight, the final rate of key-testing for the RC5-32/
12/6 (330 million keys per second) doesn’t allow the
recovery of a 56-bit key anytime soon. At such a
rate, the recovery of the key used in RC5-32/12/7
might be expected to require around 255 / 330 x 220

seconds, which is a little under three and a half years.

0

50

100

150

200

250

300

350

28 Jan 30 Jan 1 Feb 3 Feb 5 Feb 7 Feb 9 Feb date

Mkeys/sec. After a slower
build up, the
rate of key
testing doubled
over the last
two three-day
periods […]

[…] does the
single server
approach
generate a
potential
bottleneck for
such large
search efforts?
Under normal
conditions, no.

Figure 2: The total percentage of the key space searched
by the conclusion of each day of the challenge. At the
conclusion of the challenge 57.6% of the key space had
been searched.

These crude graphs give no indication of any form
of saturation point being reached in the available
computational power had the challenge on RC5-32/
12/6 not ended on February 10th. Indeed, the more
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3 One press release contained the colorful phrase that “40-bit
encryption isn’t worth the electrons it’s carried on” (Comput-
ing, February 20, 1997).

But this assumes that we have the same resources at
hand as we had at the conclusion of the attack on
48-bit RC5. Instead we might estimate from Figure
1 that the speed of the search effort was doubling
roughly every three days and showed little imminent
sign of slackening. With the combined publicity of
both the 40- and the 48-bit challenge let us suppose
that we can maintain this level of increasing involve-
ment for more than another nine days.2 Under this
assumption a level of computing power around 10
times the final rate of key testing obtained for RC5-
32/12/6 seems reasonable. With this kind of compu-
tational power available, an exhaustive search effort
on RC5-32/12/7 is certainly within reach and might
require around four calendar months.

And what are the implications for an exhaustive key
search attempt on DES? While the key is of the same
length as that used for RC5-32/12/6, testing a DES key
is faster than testing an RC5 key. Depending on the
techniques used, a factor of between two and four im-
provement in time when testing a DES key offers a
reasonable guide. (Some implementations can test half
a million DES keys per second on a Pentium 120.) With
such a factor in hand, and if our estimate on the avail-
able power for such a search holds, then the hope of
being able to achieve the recovery of a DES key in
software within months (or potentially even weeks)
seems to be quite reasonable.

Conclusions
The implications of the searches for both RC5-32/
12/5 and RC5-32/12/6 are immediate and obvious.
Against adversaries with access to even a modest
amount of computing power, the strength of sym-
metric encryption using keys of either 40 or 48 bits
can only be described as “slight”.3

It is also clear that a 56-bit encryption key as pro-
vided for in new proposals for United States export
regulations (see http://www.bxa.doc.gov/encstart.htm)
offers too little protection when we consider the po-
tential computational power available to a commit-
ted adversary. When we consider the phenomenon

known as Moore’s Law [6] which predicts a doubling
of computing power every 18 months, then even the
partial resistance offered today by the use of 56-bit
keys will soon be eroded by computational progress.

In short, these recent exhaustive search attacks give
support to the conclusions drawn by an ad hoc group
of cryptographers and computer security specialists
during 1996 (see http://www.bsa.org/policy/encryption).
In this report, it is concluded that security for the
near future could only be achieved with symmetric
key sizes of between 75 and 90 bits as a minimum.
Indeed, the more conservative recommendation given
there, and supported by the authors here, is that 128-
bit symmetric keys be used instead. As attacks go, ex-
haustive search is not elegant and prevention is easy.
But, incredibly for today’s world of international busi-
ness, existing legal restrictions often ensure that ex-
haustive search remains practical.
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Any application requiring high security for informa-
tion is a potential customer of threshold protocols.
In some applications, such as electronic commerce
and certification systems, the security of crypto-
graphic keys is a major system design issue, a poten-
tial bottleneck for system performance, and a pri-
mary target for would-be adversaries.

Single-use data can be protected by threshold secret
sharing in which one piece of secret information is
derived probably at most once from a set of secret
shares. Multiple-use keys such as the private keys of
a certicate authority or a mint for electronic money
can be protected by threshold function sharing in
which a distributed key is employed repeatedly while
maintaining its security.

Applications for threshold cryptography include
key escrow situations, such as those that could occur
in communication, commerce, and other applica-
tions.  In key escrow protocols, two or more escrow
agents or trustees hold parts of a key or keys.  Peri-
odically, the escrow agents may be called upon to
employ a key that they jointly hold.  At this point,
if the key is shared via a threshold cryptography
protocol, the key may be employed distributedly in
a robust fault-tolerant way.  Furthermore, if the key
is distributed using a threshold function sharing
protocol, it might be employed repeatedly without
revealing the key itself.

Threshold cryptography protocols address a variety
of adversaries and a variety of attacks.  They main-
tain appropriate security against hackers, insiders,
disgruntled ex-employees, computer viruses, and
other agents of data espionage and destruction.

The types of security that threshold cryptography can
provide include:

• confidentiality against outsiders and coalitions of
shareholders.

• data integrity and availability in the presence of
adversarial shareholders.

• verification that the data being shared is correct.
• verifiable robust distributed cryptographic func-

tion computation without revealing the key.
• robust confidentiality and integrity in the pres-

ence of an adversary that, over a period time, in-
filtrates many, possibly all, shareholders.

First we present two important models for threshold
cryptography — single-secret sharing and function
sharing. Then we describe three single-secret sharing
protocols and their underlying mathematical tech-
niques. After presenting a sharing protocol for the
RSA function we present three additional dimensions
of security that improve threshold protocols.

The Basic Model
Threshold protocols aim to achieve the two some-
what divergent goals of data secrecy and data integ-
rity/availability.

If integrity were the only goal, then simple duplica-
tion of the full data among n parties would prevent
coalitions of up to n − 1 parties from erasing the
secret. However, this also would ensure that any one
party could disclose the secret to an adversary.

If secrecy were the only goal, then solutions might
include splitting the data into n pieces that are
(n − 1)-wise independent random variables and giv-
ing one piece to each of the n parties. This would
require all n parties to divulge the secret. However,
the destruction or alteration of any one piece would
erase the distributed secret.

Threshold protocols maintain secrecy in the face of
up to k − 1 adversaries and yet achieve data integrity
and availability with the cooperation of k sharehold-
ers. In the protocols in the literature (see the at-
tached bibliography for a partial set of references)
and in those that we describe, k can generally be any
number and is generally independent of n.

Single-secret threshold paradigm
A basic k-of-n threshold protocol involves n parties
called shareholders, possibly one party called a dealer,
and possibly one party called a combiner.

An Introduction to Threshold Cryptography

Peter Gemmell is a researcher at Sandia National Laboratories
and is supported by the U.S. Department of Energy. He can be
contacted at psgemme@cs.sandia.gov.
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k−1
i=0

k
j=1

The shareholders all hold pieces of data called
shares. Any k shareholders can combine their shares
to deduce a secret s. No k − 1 shares yield any sig-
nificant information about the value s. The com-
biner gathers information from the shareholders and
computes the secret. The combiner may be one or
more of the shareholders, or, in some protocols, a
distinct party.

In some protocols, the shareholders themselves col-
lectively choose the secret s (without knowing indi-
vidually what it is) and determine their shares.

In other protocols, the shares are distributed initially
by a dealer who chooses the secret.  This dealer is
trusted not to reveal the secret to others — includ-
ing the shareholders.  In some implementations, the
dealer may be a tamper-resistant device jointly and
securely created by the shareholders. This device may
produce a random secret and shares, distribute the
shares confidentially among the shareholders, and
subsequently erase its copy of the secret and shares.

Threshold sharing for functions
One shortcoming of threshold sharing of single-se-
crets is that to employ the secret in a useful way
shareholders have to reveal it among themselves.
In this case, the combiner will learn the key to a
shared cryptographic function the first time that it
is applied.

De Santis, Desmedt, Frankel, and Yung [10] intro-
duced the notion of threshold sharing for functions.
There had been a great deal of previous work in
this area, including work by [23], [8], [16], [12], and
[14]. In [10]’s model, they described how to share a
key to a cryptographicly secure function f in such a
way that:

• Any k shareholders can collectively compute f.
• Even after taking part in the computation of f on

some inputs, no set of up to k - 1 shareholders can
compute f on other inputs.

Fault-tolerance extensions to
threshold secret sharing
In addition to the single-secret and threshold para-
digms, researchers have added notions including veri-
fiable secret sharing, robustness, and proactive sharing.
These three ideas are discussed in later sections.

Mathematical Techniques and
Single-Secret Protocols

Shamir’s protocol and interpolating polynomials
Many threshold protocols, including Shamir’s origi-
nal protocol, rely on an interesting property of poly-
nomials:

Observation 1:  If p(x) = ∑ a ix i is a degree d poly-
nomial with random coefficients over a finite field F
with more than d elements, (e.g. the integers modulo
a prime greater than d) then

1. Values {p(xi)} for distinct values of xi deter-
mine p on all points.

In particular, p(x) = ∑  (p (x i)Π j≠i  )

Computing a polynomial this way is known as
LaGrange interpolation.

2. d or fewer values {p(xj)} for distinct values of
xi yield no information about p(y) for any single
value of y ∉ {x1 … xd}.

Shamir’s protocol and many others use the above prop-
erties by creating a degree k − 1 polynomial p that has
random coefficients other than that p(0) = a0 = s. Each
shareholder gets a value of p evaluated at a distinct
non-zero point.  To compute the secret s, k sharehold-
ers need only perform LaGrange interpolation.

Shamir’s original protocol is as follows:

Shamir’s basic k-of-n single-secret sharing

The initial set-up:

Dealer:  Given secret s of l bits:

1. Choose prime q > max {2 l, n }.

2. Define coefficient a0 = s.

3. Choose coefficients a1,a2, … ak-1 independently at

random from Zq.

4. For all x, define p(x) = ∑  a ix i mod q

5. Give p(i) to shareholder i for i ∈ {1, …, n}.

The reconstruction of s by k cooperating shareholders:

• The jth cooperating share-holder xj provides his or

her share p(xj) to the others.

• Each cooperating shareholder can then interpolate

the secret  s = a0 = ∑  (p(x i)Π l ≠j  ) mod q.

d+1
i=1

d+1
i=1

d
i=0

d
j=1

0− l
 j− l

In addition to
the single-secret

and threshold
paradigms,

researchers have
added notions

including verifiable
secret sharing,

robustness, and
proactive sharing.

x−xj

xi−xj
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Blakley’s protocol and facts about
plane geometry
Another tool for threshold cryptography, employed
by Blakley, is that of intersecting hyperplanes de-
fined over cross-products of a finite field.

Let F be a finite field (for example Zq, the integers
modulo a prime q).  First, consider the two-dimen-
sional case:

Observation 2:  Let L be a set of n distinct random
lines in F × F (not defined to be equal to x1 = s)
all intersecting in an unknown single point (s,t).
Then no single line l ∈ L reveals any information
about the value s. Furthermore, any 2 non-parallel
lines determine the point (s,t).

A similar observation is true in the general case:

Observation 3:  Let L be a set of n random hyper-
planes in Fk (not defined to be equal to x1 = s) all in-
tersecting in an unknown single point (s, t1, …, tk−1)
and defined so that the set of hyperplanes consisting
of L and the plane x1 = s is not degenerate. Then no
set of k−1 hyperplanes in L reveals any information
about the value s. Furthermore, any set of k different
hyperplanes in L determines (s, t1, …, tk−1).

This latter observation suggests Blakley’s threshold
sharing protocol:

Blakley’s basic k-of-n single-secret sharing

The initial set-up:

Dealer:  Given secret s of l bits:

1. Choose prime q > max {2 l, n}.

2. Compute a set L of n distinct random hyperplanes,

not defined equal to x1 = s, in Z that intersect in a

point (s, t1, …, tk-1) where t1, …, tk-1 are random

points in Zq and L is defined so that the set of hy-

perplanes consisting of L and the plane x1 = s is not

degenerate.

3. Give the coefficients of one hyperplane to each of

the shareholders.

The reconstruction of s by k cooperating shareholders:

• The k shareholders each provide one hyperplane —

a linear equation in k variables — and solve the re-

sulting set of k equations in k variables, keeping the

first coefficient as the secret.

Alon, Galil, and Yung’s Combinations
of Families and Committees
Alon, Galil, and Yung [1] have recently added an-
other combinatorial tool to the threshold cryptogra-
phy arsenal.1

They divide the secret s into shares in several differ-
ent ways, creating a number of different sets of shares.
They assign each share of each set of shares to sev-
eral different shareholders and each shareholder
holds shares from various sets of shares.

More specifically: there are a number, mfam, of fami-
lies and a number, mcom, of committees per family.
Each committee has mmem shareholders on that com-
mittee.

For each family, the secret s is broken up into mcom

shares and share i is given to all the members of the
ith committee. All the shares of any one family are
necessary and sufficient to reconstruct the secret s.

The trick then is how to choose the values mfam, mcom,
and mmem and how to assign the shareholders to com-
mittees.

Let ε be a small constant fraction (like 1/10). [1] (with
a slight generalization by [20]) showed that for rea-
sonably sized values of mfam, mcom, and mmem, most
assignments of shareholders to committees have the
following property:

1. For every set of k shareholders, the shareholders
have a representative on every committee in
most of the families.

2. For every set of fewer than k − εn shareholders,
there is no committee for which the sharehold-
ers have a representative on every committee.

We can now describe a share assignment strategy for
the dealer.

k
q

1 Technically, the families and committees of [1] do not yield

threshold protocols for large values of n, because there is a small

grey zone between the number of shareholders who always can

not compute the secret and the number of shareholders who al-

ways can. [20] determined [1]-sharing configurations that yield

exact threshold protocols for modest values of k and n.

Another tool
for threshold
cryptography,
employed by
Blakley, is that
of intersecting
hyperplanes
[…]
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Call the share assigned to the jth committee of the
ith family the share share i , j .

Alon-Galil-Yung basic single-secret sharing

The initial set-up:

Dealer:  Given secret s:   For each family i:

1. Choose the shares {sharei,j}  as independent

random variables chosen from a large interval.

2. Let share = s − Σ share i, j so that

s = Σ share i, j.

3. Determine a good assignment of shareholders to

committees and assign the shares accordingly.

The reconstruction of s by k cooperating shareholders:

• The shareholders determine a family i0 for which

they have a member on each committee and then

compute s = Σ  share  .

De Santis, Desmedt, Frankel, and Yung’s
Threshold Function Sharing of RSA
[10] presented an elegant threshold function sharing
protocol for RSA. Their protocol allows the share-
holders to evaluate repeatedly an RSA signature or
decryption function in a distributed way without af-
fecting the confidentiality of the private key.

To accomplish their goals, [10] adopted the
LaGrange interpolation approach to sharing.

They had to enable the combiner to compute h(M)d

mod N without learning d, the RSA private key.
Here, h(M) refers to the hash of the message being
signed and N is the RSA modulus.

To do this, they had the combiner and shareholders
perform the LaGrange interpolation implicitly in the
exponent of the message:

h(M)d = h(M)Σ = Π (h(M)p(x i)) mod N

Note that this process implies that some party has to
be able to compute inverses of some elements in the
exponent.  However, if one person knew non-trivial
elements a and a−1 mod(φ (N)), then they could fac-
tor N. [10] solved this difficult problem by extend-
ing the group of RSA exponents to a larger set of
operators.  This set contains special invertable ele-
ments that do not compromise the RSA key.

Verifiable Secret Sharing
When a dealer provides the shareholders with the
shares of a secret s, no set of k − 1 shareholders are
supposed to know what the secret is.

However, the shareholders might still be assured in-
dividually that their shares could be combined to
form the correct secret, or at least one unambiguous
secret. This notion, called verifiable secret sharing,
was pioneered by [6] and [15] and is used in many
threshold protocols.

Robustness
Some threshold sharing protocols are vulnerable to
attacks from adversarial shareholders whose goal is
to prevent good shareholders from reconstructing the
secret.

For example, in Shamir’s original protocol, a group
of k shareholders wishing to determine the secret s
may contain one adversary who lies about the value
of his or her share.  Not only will this lying prevent
the reconstruction of the secret, but the other share-
holders will not know who to blame for the failure
to reconstruct the secret.  In fact, they may not real-
ize that the result of the protocol is not the real
secret.

These complications imply that, without modifica-
tion, some protocols may be unable to produce a con-
sistent secret when a large number of good share-
holders is contaminated with a relatively small num-
ber of anonymous adversarial shareholders.

A solution is as follows. Shareholders prove that
their computations and/or communications follow
protocols correctly. Furthermore these shareholders
do not compromise the confidentiality of their shares
in the process.

Fortunately, there is a large body of algorithmic
theory to wield on this problem. Zero-knowledge
proofs address this issue allowing one party to prove
the correctness of computation to another party
while ensuring that no additional information is re-
leased. There are a number of variations on this
theme.

Recently, [22] and [20] described robust function
sharing protocols for RSA and [21] and [24] described

m com−1
j=1

i,m com

mcom−1
j=1

mcom

j=1

mcom

j=1 i0 , j

k
i=1

k
i=1(p (x

i
)Π

j ≠i
 )0−xi

x i−xi
Π j ≠i

0−xj

xi−xj

 […] the
shareholders

might still
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individually that
their shares could

be combined to
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secret […]
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many threshold
protocols.
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robust sharing protocols for DSS and related signa-
ture functions.

Proactive Sharing
Ostrovsky and Yung [32] recently introduced the no-
tion of proactive secret sharing protocols. Proactive
protocols protect against a mobile adversary that may
occupy and vacate shareholders and then move on
to others. This adversary may occupy only up to k − 1
shareholders at once, but it may occupy any or all
shareholders over the lifetime of the system. One ex-
ample of such an adversary could be realized by a
sequence of computer virus infections. Another could
be a sequence of disgruntled ex-employees who have
had access to share information.

A sequence of proactive threshold protocols has been
announced in the last couple of years, including pro-
active threshold protocols for single-secret sharing
[28], proactive threshold protocols for signatures such
as DSS, Schnorr, and El Gamal [24], and for the RSA
function [20].

Conclusions
The theory of threshold cryptography has benefited
from years of model and protocol design and insight
into future applications.

With the advent of certification authorities and elec-
tronic payment systems on the internet, threshold
cryptography could be implemented widely within
the next few years.

There is more threshold cryptography research to be
done, however, including shared RSA key genera-
tion, more efficient protocols, and the development
of new models as industrial needs develop.
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S T A N D A R D S  U P D A T E

RC5 is Published as an Internet RFC
RC5 is now an official Internet Engineering Task
Force Informational Standard (RFC).

Invented in 1994 by Professor Ronald L. Rivest of
the Massachusetts Institute of Technology, RC5 is a
fast and simple block cipher. Among the distinguish-
ing feature of RC5 are the parameterized block size,
the variable number of rounds that might be used
during encryption, and the variable key length.  By
the careful selection of these parameters, RC5 can
be adjusted to meet different application specific
goals of security, performance, and exportability.

The RFC 2040 defines four ciphers with enough de-
tail to ensure interoperability between different
implementations.  The first cipher is the raw RC5
block cipher.  The RC5 cipher takes a fixed size in-
put block and produces a fixed sized output block
using a transformation that depends on a key.  The
second cipher, RC5-CBC, is the Cipher Block Chain-
ing (CBC) mode for RC5.  It can process messages
whose length is a multiple of the RC5 block size.
The third cipher, RC5-CBC-Pad, handles plaintext
of any length, though the ciphertext will be longer
than the plaintext by at most the size of a single RC5
block.  The RC5-CTS cipher is the Cipher Text
Stealing mode of RC5, which handles plaintext of
any length and the ciphertext length matches the
plaintext length.

For more details, the RFC can be fetched via ftp
from ftp://ds.internic.net/rfc/rfc2040.txt.

Successor to DES Sought
Draft minimum acceptability requirements and draft
criteria for the evaluation of candidates for the forth-
coming Advanced Encryption Standard (AES) were
published in the Federal Register on January 2, 1997.
Additionally, the draft submission requirements for
potential candidates were also announced for com-
ment.  An open, public workshop was scheduled by
NIST for April 15, 1997, to discuss issues arising from
the announcement.

It is intended that the AES will specify an unclassi-
fied, publicly disclosed encryption algorithm capable
of protecting sensitive government information well
into the next century. The recently published bulle-
tin both describes the process of developing an AES

and also invites comments from the public, manu-
facturers, voluntary standards organizations, and fed-
eral, state, and local government users so that their
needs can be considered.

While the initial publication in the Federal Register
highlights many interesting and relevant issues, it
seems that both the technical requirements for pro-
posals and the procedures by which the AES effort is
intended to move forward still require more detail to
avoid potential ambiguities.

As the AES initiative continues, it’s progress will be
closely reported by CryptoBytes.

Progress on P1363 Continues
The IEEE P1363 project, “Standard for Public-Key
Cryptography,” is moving ahead towards balloting
the standard.

The standard provides comprehensive treatment of
three families of public-key techniques: those based
on the discrete logarithm problem over finite fields
(such as Diffie-Hellman), on discrete logarithm
problem over elliptic curve groups (such as
ECDSA), and on the integer factoring problem
(such as RSA). The August 1996 meeting (which
followed the Crypto ’96 conference) generated a
lot of interest in the cryptographic community, and
the working group has received much desired feed-
back, including new proposals for inclusion into the
standard.

In order to give the new proposals the thorough con-
sideration they deserve, the working group decided
at its November 1996 meeting to issue the standard
in two parts.  The first part, which is close to comple-
tion, was discussed in detail at the March 24-26
meeting in Auburn, Alabama.  At the same time,
work on the second part, to be issued later as an
addendum to the standard, is continuing.

The working group plans to ballot the first part of
the standard during 1997. A draft of the first part
will be presented at the May 1997 meeting which
follows the Eurocrypt ’97 conference. Information
on the contents of the first part and the proposals for
the addendum, as well as other information on the
project, can be found at the working group’s website
at http://stdsbbs.ieee.org/groups/1363/.
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The RC5 encryption algorithm was designed by Pro-
fessor Ron Rivest and first published in December
1994 [10].  Since then, RC5 has attracted the atten-
tion of many researchers in the cryptographic com-
munity in attempts to accurately assess the security
offered. In this article, we give a brief summary of
the known cryptanalytic results on RC5 and we as-
sess the current status of the cipher.

Features of RC5
RC5 is a fast block cipher designed to be suitable for
both software and hardware implementation. It is a
parameterized algorithm with a variable key size, a
variable block size, and a variable number of rounds.
This provides the opportunity for great flexibility in
both the performance characteristics and the level
of security offered. Two of the most distinguished fea-
tures of RC5 are the heavy use of data-dependent
rotations and the exceptionally simple encryption
routine. The former feature has been shown to be
useful in preventing certain advanced types of at-
tack, while the latter feature makes RC5 both easy
to implement, and very importantly, more amenable
to analysis than many other block ciphers.

Overview of Cryptanalytic Results
Several techniques have been developed for analyz-
ing the security of block ciphers, including exhaus-
tive key search attack, statistical tests, differential crypt-
analysis [2] and linear cryptanalysis [8]. (See [11] for
detailed discussions.) The last two types of attack,
both considered substantial advances in recent years,
are more sophisticated techniques for block cipher
analysis. For differential cryptanalysis, the basic idea
is to choose two plaintexts with a certain difference
between them so that the resulting ciphertexts have
a difference with a specific value with a probability
that is better than we might expect. Such a pair of
differences (which lead to the concept of a “charac-
teristic”) is useful in deriving certain bits of the key.
For linear cryptanalysis, the basic idea is to find a
linear relation among bits of plaintext, ciphertext,
and key which hold with a probability that is not

equal to 1/2. Such a “linear approximation” can poten-
tially be used to obtain information about the key.

The first cryptanalytic results on RC5 were given by
Kaliski and Yin [3] at Crypto’95 (a summary can be
found in [4]). By analyzing the basic structure of the
encryption routine as well as the properties of data-
dependent rotations, it is possible to construct differ-
ential characteristics and linear approximations of
RC5 that are useful for mounting differential and lin-
ear attacks. Both styles of attack are quite effective
on RC5 with a very small number of rounds, but the
plaintext requirements increase quickly as the num-
ber of rounds grows. Their results, further extended
in [5], show that the use of data-dependent rotations
and the incompatibility between the different arith-
metic operations used in encryption help prevent
both differential and linear cryptanalysis.

At Crypto’96, Knudsen and Meier [6] presented nice
improvements over Kaliski and Yin’s differential at-
tack [3] by a careful analysis of the relations between
input, output, and the subkeys used in the first two
rounds of encryption. Even though the characteris-
tics used in their attack are essentially the same as
in [3], they were able to improve the plaintext re-
quirements by a factor of up to 512 by exploiting the
characteristics in an innovative and sophisticated
way. They also considered the existence of certain
weaker keys for RC5 with respect to which their at-
tack can be further enhanced.

Moriai, Aoki, and Ohta [9] have investigated the
strength of RC5 against linear cryptanalysis by fo-
cusing on the bias of linear approximations for fixed
keys, rather than the average bias over all possible
keys which is the customary model for linear crypt-
analysis. They also considered a mini-version of RC5
with much reduced word size and computed the per-
centage of keys that yield ciphers less resistant to
linear cryptanalysis than the average case analysis
might suggest [3]. While  interesting, their work has
little practical impact.

As of this writing, the differential attack described
in [6] and the linear cryptanalytic attack described
in [3] offer the best avenues for the sophisticated
cryptanalyst. A summary of the data requirements
for a successful attack against RC5 with a varying
number of rounds is provided at right. Note that the
second row of both tables have been derived from
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64-bit block size (w = 32)

rounds 4 6 8 10 12 14   16

differential cryptanalysis (chosen plaintext) 217 224 235 246 254 263 >

differential cryptanalysis (known plaintext) 241 245 250 256 260 > >

linear cryptanalysis (known plaintext) 240 260 > > > > >

128-bit block size (w = 64)

rounds 4 8 12 16 20 24   28

differential cryptanalysis (chosen plaintext) 219 242 258 283 2106 2123 >

differential cryptanalysis (known plaintext) 274 286 294 2106 2118 > >

linear cryptanalysis (known plaintext) 247 295 2119 > > > >

the first by using the simple fact [2] that a differen-
tial attack with m chosen plaintexts can be converted
into a known plaintext attack which requires ap-
proximately 2w(2m)1/2 known plaintexts where the
block size is 2w. While most of these attacks are im-
practical anyway, we have used “>“ to denote when
the attack is impossible even at a theoretical level.

In late 1995, Kocher [7] developed what are called
timing attacks that are generally applicable to many
cryptosystems. In such an attack, an opponent tries
to obtain information about the secret key (or pri-
vate key) by recording and analyzing the time used
for cryptographic operations that involve the key.
Kocher observed that RC5 may be subject to timing
attacks if RC5 is implemented on platforms for which
the time for computing a single rotation is propor-
tional to the rotation amount. If RC5 is implemented
on platforms with a constant rotation time (which is
true for many platforms), then RC5 is actually com-
pletely resistant to timing attacks since encryption of
any plaintext would take a constant time.

With regards to the less sophisticated brute-force at-
tack of trying each key in turn, the security of RC5
is obviously dependent on the length of the encryp-
tion key that is used (as is the case with all ciphers).
RC5 has the attractive feature that the length of the
key can be varied (unlike the situation with DES for
instance) and so the level of security against these
attacks can be tuned to suit the application. With
the launch of the RSA Data Security Secret-Key
Challenge (see elsewhere in this issue of CryptoBytes
for more details on this challenge) it is hoped that
the resistance of ciphers to exhaustive key search
attacks can be more accurately gauged in the future.
Some of the posted challenges, such as RC5 encryp-
tion with a 40- and 48-bit key were solved very
quickly, as was expected. But some of the longer key
lengths are likely to remain an unsolved challenge
for some considerable time to come!

Status of RC5
Early results on the cryptanalysis of RC5 have been
very encouraging. With the cipher receiving consid-
erable attention from cryptanalysts worldwide, a pic-
ture of the security offered by RC5 has been quick to
develop. Acceptance of the cipher is growing, and
RC5 has been discussed for inclusion in various stan-
dards efforts and has been published by the IETF in
RFC 2040 [1]. Two years on, it seems that the RC5
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The RSA Data Security
Factoring Challenge
RSA Laboratories recently augmented the list
of challenge numbers offered as part of the RSA
Data Security Factoring Challenge. Launched
in 1992, the Factoring Challenge aims to keep
track of the progress of factoring by providing
financial prizes to those that factor different
types of numbers. One set in particular consists
of different length numbers of the type that
would be suitable for use as RSA moduli. These
are considered to be the hardest numbers to fac-
tor for a given length.

Recent factoring achievements such as the fac-
torizations of RSA-129 and RSA-130 have fo-
cused attention on the RSA Challenge numbers,
particularly so since improvements in factoring
appear to be bringing a 512-bit RSA number
within reach. In reponse to requests to add num-
bers of “landmark” lengths, RSA Laboratories
has added RSA-155 (512 bits), RSA-232 (768
bits), RSA-309 (1024 bits) and RSA-617 (2048

bits) to the list of RSA Challenge numbers. The
full list can be obtained by sending E-mail to
challenge-rsa-list@rsa.com and more information
can be found via http://www.rsa.com/rsalabs/.

The RSA Data Security
Secret-Key Challenge
The RSA Secret-Key Challenge, launched on
January 28, 1997, consists of one DES challenge
and twelve contests based around the block ci-
pher RC5. The aim is to demonstrate by ex-
ample the resistance of symmetric ciphers with
different key lengths to exhaustive search attack.

The first two RC5 contests, denoted RC5-32/
12/5 and RC5-32/12/6, which used a 40- and
48-bit key respectively, have already been
solved but the remaining ten RC5 contests and
the DES contest remain open. The prize for
solving each challenge is $10,000.

More complete contest details are available via
http://www.rsa.com/.


