N UMBER 1 2 - M AY 3,

1999

RSA
Laboratories

.--o
RSA Laboratories.

Bulletin

News and advice on data security and cryptography

An Analysis of Shamir’s Factoring Device

Robert D. Silverman
RSA Laboratories, Bedford, Massachusetts

At a Eurocrypt rump session, Professor Adi Shamir
of the Weizmann Institute announced the design
for an unusual piece of hardware. This hardware,
called “TWINKLE” (which stands for The
Weizmann INstitute Key Locating Engine), is an
electro-optical sieving device which will execute
sieve-based factoring algorithms approximately two
to three orders of magnitude as fast as a conven-
tional fast PC. The announcement only presented
a rough design, and there a number of practical dif-
ficulties involved with fabricating the device. It
runs at a very high clock rate (10 GHz), must trig-
ger LEDs at precise intervals of time, and uses wa-
fer-scale technology. However, it is my opinion that
the device is practical and could be built after some
engineering effort is applied to it. Shamir estimates
that the device can be fabricated (after the design
process is complete) for about $5,000.

What is a sieve-based factoring algo-
rithm?

A sieve based algorithm attempts to construct a so-
lution to the congruence A? = B2mod N, whence
GCD(A-B,N) is a factor of N. It does so by at-
tempting to factor many congruences of the form
C =D mod N, where there is some special relation
between C and D. Each of C and D is attempted to
be factored with a fixed set of prime numbers called
a factor base. This yields congruences of the form:

n P =0 (p) mod N

Robert Silverman is a Senior Research Scientist at RSA Laborato-
ries, and can be reached at rsilverman@rsa.com.

where P, are the primes in the factor base associated
with C and p; are the primes in the factor base asso-
ciated with D. These factored congruences are found
by sieving all the primes in the factor base over a
long sieve interval. One collects many congruences
of this form (as many as there are primes in the two
factor bases) then finds a set of these congruences
which when multiplied together yields squares on
both sides. This set is found by solving a set of linear
equations mod 2. Thus, there are two parts to a sieve-
based algorithm: (1) collecting the equations by siev-
ing, and (2) solving them. The number of equations
equals the sum of the sizes of the factor bases. A
variation allows somewhat larger primes in the fac-
torizations than those in the factor bases. This has
the effect of greatly speeding the sieving process, but
makes the number of equations one needs to solve
much larger. One could choose not to use the larger
primes, but then one needs a much larger factor base,
once again resulting in a larger matrix.

It should be noted that sieve based algorithms can
also be used to solve discrete logarithm problems as
well as factor. This applies to discrete logs over fi-
nite fields, but not to elliptic curve discrete logs.
Solving discrete logs takes about the same amount
of time as factoring does for same-sized keys. How-
ever, the required space and time for the matrix is
much larger for discrete logs. One must solve the
system of equations modulo the order of the field,
rather than mod 2.

What has been achieved so far with
conventional hardware?

Recently, a group led by Peter Montgomery an-
nounced the factorization of RSA-140, a 465-bit

number. The effort took about 200 computers, run-

RS A LABORATORIES

ning in parallel, about 4 weeks to perform the siev-
ing, then it took a large CRAY about 100 hours and
810 Mbytes of memory to solve the system of equa-
tions. The size of the factor bases used totaled about
1.5 million primes resulting in a system of about 4.7
million equations that needed to be solved.

How long would RSA-140 take with
TWINKLE?

Each device is capable of accommodating a factor
base of about 200,000 primes and a sieve interval of
about 100 million. RSA-140 required a factor base
of about 1.5 million, and the sieve interval is ad-
equate, so about 7 devices would be needed. One
can use a somewhat smaller factor base, but a sub-
stantially smaller one would have the effect of greatly
increasing the sieving time. This set of devices would
be about 1000 times faster than a single conventional
computer, so the sieving could be done in about 6
days with 7 devices. The matrix would still take 4
days to solve, so the net effect would be to reduce
the factorization time from about 33 days to 10 days,
a factor of 3.3. This is an example of Amdahl’s law
which says that in a parallel algorithm the maxi-
mum amount of parallelism that can be achieved is
limited by the serial parts of the algorithm. The time
to solve the matrix becomes a bottleneck. Even
though the matrix solution for RSA-140 required
only a tiny fraction of the total CPU hours, it repre-
sented a fair fraction of the total ELAPSED time: it
took about 15% of the elapsed time with conven-
tional hardware for sieving. It would take about 40%
of the elapsed time with devices. Note further that
even if one could sieve infinitely fast, the speedup
obtained would only be a factor of 8 over what was
actually achieved.

How long would a 512-bit modulus
take with TWINKLE?

A 512-bit modulus would take 6 to 7 times as long
for the sieving and 2 to 3 times the size of the factor
bases as RSA-140. The size of the matrix to be
solved grows correspondingly, and the time to solve
it grows by a factor of about 8. Thus, 15 to 20 de-
vices could do the sieving in about 5-6 weeks. Dou-
bling the number will cut sieving time in half. The
matrix would take another 4 weeks and about 2
Gbytes of memory to solve. The total time would be
9-10 weeks. With the same set of conventional hard-
ware as was used for RSA-140, the sieving would
take 6 to 7 months and the matrix solving resources
would remain the same.

Please note that whereas with RSA-140, solving the
matrix would take 40% of the elapsed time, with a

B ULLETIN # 1 2 -_ M AY 3,

1999

512-bit number it would take just a bit more. This
problem will get worse as the size of the numbers
being factored grows.

How well will TWINKLE scale to larger
numbers?

A 768 bit number will take about 6000 times as long
to sieve as a 512-bit number and will require a factor
base which is about 80 times large. The length of
the sieve interval would also increase by a factor of
about 80. Thus, while about 1200 devicess could ac-
commodate the factor base, they would have to be
redesigned to accommodate a much longer sieve in-
terval. Such a set of machines would still take 6000
months to do the sieving. One can, of course, re-
duce this time by adding more hardware. The
memory needed to hold the matrix would be about
64 Gbytes and would take about 24,000 times as long
to solve.

A 1024-bit number is the minimum size recom-
mended today by a variety of standards (ANSI
X9.31, X9.44, X9.30, X9.42). Such a number would
take 6 to 7 million times as long to do the sieving as
a 512-bit number. The size of the factor base would
grow by a factor of about 2500, and the length of the
sieve interval would also grow by about 2500. Thus,
while about 45,000 devices could accommodate the
factor base, they would again have to be redesigned
to accommodate much longer sieve intervals. Such
a set would still take 6 to 7 million months (500,000
years) to do the sieving.

The memory required to hold the matrix would grow
to 5 to 10 Terabytes and the disk storage to hold all
the factored relations would be in the Petabyte
range. Solving the matrix would take “about” 65
million times as long as with RSA-512. These are
rough estimates, of course, and can be off by an or-
der of magnitude either way.

What are the prospects for using a
smaller factor base?

The Number Field Sieve finds its successfully fac-
tored congruences by sieving over the norms of two
sets of integers. These norms are represented by
polynomials. As the algorithm progresses, the coef-
ficients of the polynomials become larger, and the
rate at which one finds successful congruences drops
dramatically. Most of the successes come very early
in the running of the algorithm. If one uses a sub-
optimally sized factor base, the ‘early’ polynomials
do not yield enough successes for the algorithm to
succeed at all. One can try sieving more polynomi-
als, and with a faster sieve device this can readily be

RS A LABORATORIES

done. However, the yield rate Keysize

B ULLETIN # 1 2 -_ M AY 3,

Total Time

1999

Factor Base = Sieve Memory Matrix Memory

can drop so dramatically that 498 55% 1017 500K 24Mbytes 128M
no additional amount of siev- ”
ing can make up for the too- 465 2.5%10 1.2M 64Mbytes 825Mbyles
small factor base. 512 1.7 %101 3M 128Mbytes 2 Ghytes
768 1.1 *1028 240M 10Gbytes 160Cbytes

The situation is different if one

o 1024 1.3 % 10% 7.5G 256Gbytes 10Tbytes
uses the Quadratic Sieve. For

this algorithm all polynomials

are ‘equal’, and one can use a sub-optimal factor base.
However, for large numbers, QS is much less effi-
cient than NFS. At 512-bits, QS is about 4 times
slower than NFS. Thus, to do 512-bit numbers with
devices, QS should be the algorithm of choice,
rather than NFS. However, for 1024-bit numbers,
QS is slower than NFS by a factor of about 4.5 mil-
lion. That’s a lot. And the factor base will still be
too large to manage, even for QS.

What are the prospects for speeding
the matrix solution?

Unlike the sieving phase, solving the matrix does
not parallelize easily. The reason is that while the
sieving units can run independently, a parallel ma-
trix solver would require the processors to commu-
nicate frequently and both bandwidth and commu-
nication latency would become a bottleneck. One
could try reducing the size of the factor bases, but
too great a reduction would have the effect of vastly
increasing the sieving time. Dealing with the prob-
lems of matrix storage and matrix solution time
seems to require some completely new ideas.

Key Size Comparison

The table below gives, for different RSA key sizes,
the amount of time required by the Number Field
Sieve to break the key (expressed in total number of
arithmetic operations), the size of the required fac-
tor base, the amount of memory, per machine, to do
the sieving, and the final matrix memory.

The time column in the table below is useful for com-
parison purposes. It would be difficult to give a mean-
ingful elapsed time, since elapsed time depends on
the number of machines available. Further, as the
numbers grow, the devices would need to grow in size
as well. RSA-140 (465 bits) will take 6 days with 7
devices, plus the time to solve the matrix. This will
require about 2.5 * 108 arithmetic operations in to-
tal. A 1024-bit key will be 52 million times harder in
time, and about 7200 times harder in terms of space.

The data for numbers up to 512-bits may be taken as
accurate. The estimates for 768 bits and higher can
easily be off by an order of magnitude.

Copyright © 1999 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics Company. All rights reserved. E

Conclusion
The idea presented by Dr. Shamir is a nice theoreti-
cal advance, but until it can be implemented and

the matrix difficulties resolved it will not be a threat
to even 768-bit RSA keys, let alone 1024. m=g

References:

1. AKX Lenstra & H.W. Lenstra (eds), The Development
of the Number Field Sieve, Springer-Verlag Lecture
Notes in Mathematics #1554

2. Robert D. Silverman, The Multiple Polynomial Qua-
dratic Sieve, Mathematics of Computation, vol. 48,
1987, pp. 329-340

3. H. teRiele, Factorization of RSA-140, Internet an-
nouncement in sci.crypt and sci.math, 2/4/99

4. RM. Huizing, An Implementation of the Number Field
Sieve, CWI Report NM-R9511, July 1995

For more information on this and other recent
security developments, contact RSA Laborato-

ries at one of the addresses below.

RSA Laboratories

20 Crosby Drive

Bedford, MA 01730 USA
781/687-7000
781/687-7213 (fax)
rsa-labs@rsa.com

http:/lwww.rsa.com/rsalabs/

